File size: 1,361 Bytes
8ed6f97
5a53999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ed6f97
 
5a53999
8ed6f97
5a53999
8ed6f97
5a53999
8ed6f97
5a53999
 
8ed6f97
5a53999
8ed6f97
5a53999
8ed6f97
5a53999
 
 
8ed6f97
5a53999
 
 
 
 
 
8ed6f97
5a53999
8ed6f97
5a53999
 
8ed6f97
5a53999
 
8ed6f97
5a53999
8ed6f97
5a53999
 
 
8ed6f97
5a53999
8ed6f97
5a53999
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
- nroggendorff/eap
language:
- en
license: mit
tags:
- trl
- sft
- art
- code
- adam
- mistral
model-index:
- name: eap
  results: []
---

# Edgar Allen Poe LLM

EAP is a language model fine-tuned on the [EAP dataset](https://huggingface.co/datasets/nroggendorff/eap) using Supervised Fine-Tuning (SFT) and Teacher Reinforced Learning (TRL) techniques.

## Features

- Utilizes SFT and TRL techniques for improved performance
- Supports English language

## Usage

To use the LLM, you can load the model using the Hugging Face Transformers library:

```python
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)

model_id = "nroggendorff/llama-eap"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config)

prompt = "[INST] Write a poem about tomatoes in the style of Poe.[/INST]"
inputs = tokenizer(prompt, return_tensors="pt")

outputs = model.generate(**inputs)

generated_text = tokenizer.batch_decode(outputs)[0]
print(generated_text)
```

## License

This project is licensed under the MIT License.