wide_resnet101_2

Implementation of Wide ResNet proposed in "Wide Residual Networks"

Create a default model

WideResNet.wide_resnet50_2()
WideResNet.wide_resnet101_2()
# create a wide_resnet18_4
WideResNet.resnet18(block=WideResNetBottleNeckBlock, width_factor=4)

Examples:

# change activation
WideResNet.resnext50_32x4d(activation = nn.SELU)
# change number of classes (default is 1000 )
WideResNet.resnext50_32x4d(n_classes=100)
# pass a different block
WideResNet.resnext50_32x4d(block=SENetBasicBlock)
# change the initial convolution
model = WideResNet.resnext50_32x4d
model.encoder.gate.conv1 = nn.Conv2d(3, 64, kernel_size=3)
# store each feature
x = torch.rand((1, 3, 224, 224))
model = WideResNet.wide_resnet50_2()
features = []
x = model.encoder.gate(x)
for block in model.encoder.layers:
    x = block(x)
    features.append(x)
print([x.shape for x in features])
# [torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14]), torch.Size([1, 512, 7, 7])]
Downloads last month
9
Hosted inference API

Unable to determine this model’s pipeline type. Check the docs .