File size: 1,873 Bytes
0493a83
 
 
43fe8bb
0493a83
 
 
 
 
 
 
 
 
 
 
 
 
 
43fe8bb
0493a83
43fe8bb
 
0493a83
7ec0757
 
 
 
 
0493a83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43fe8bb
 
 
0493a83
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
license: apache-2.0
base_model: facebook/dinov2-base-imagenet1k-1-layer
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: my_awesome_food_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_food_model

This model is a fine-tuned version of [facebook/dinov2-base-imagenet1k-1-layer](https://huggingface.co/facebook/dinov2-base-imagenet1k-1-layer) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1930
- Accuracy: 0.943

This is just a model created by following the the Tramnformers tutorial on image classification at https://huggingface.co/docs/transformers/main/en/tasks/image_classification

So quite worthless


## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3989        | 0.992 | 62   | 0.3865          | 0.867    |
| 0.2722        | 2.0   | 125  | 0.2720          | 0.916    |
| 0.126         | 2.976 | 186  | 0.1930          | 0.943    |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0