File size: 3,054 Bytes
c072df5 71e690c c072df5 f366b9c c072df5 f366b9c c072df5 b953b61 c072df5 7d16d2c c072df5 7d16d2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-piid
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: val
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7853881278538812
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-piid
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5715
- Accuracy: 0.7854
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.2088 | 0.98 | 20 | 1.1661 | 0.4521 |
| 0.7545 | 2.0 | 41 | 0.8866 | 0.6073 |
| 0.6281 | 2.98 | 61 | 0.7788 | 0.6849 |
| 0.5939 | 4.0 | 82 | 0.6443 | 0.7397 |
| 0.5254 | 4.98 | 102 | 0.5097 | 0.7808 |
| 0.5583 | 6.0 | 123 | 0.5715 | 0.7854 |
| 0.3463 | 6.98 | 143 | 0.6163 | 0.7352 |
| 0.3878 | 8.0 | 164 | 0.5671 | 0.7671 |
| 0.3653 | 8.98 | 184 | 0.5690 | 0.7580 |
| 0.3529 | 10.0 | 205 | 0.5940 | 0.7580 |
| 0.301 | 10.98 | 225 | 0.6303 | 0.7626 |
| 0.2639 | 12.0 | 246 | 0.5725 | 0.7763 |
| 0.2847 | 12.98 | 266 | 0.6280 | 0.7717 |
| 0.25 | 14.0 | 287 | 0.5975 | 0.7717 |
| 0.2472 | 14.98 | 307 | 0.5821 | 0.7671 |
| 0.1676 | 16.0 | 328 | 0.6456 | 0.7626 |
| 0.1327 | 16.98 | 348 | 0.6117 | 0.7671 |
| 0.1977 | 18.0 | 369 | 0.6988 | 0.7489 |
| 0.1602 | 18.98 | 389 | 0.6448 | 0.7671 |
| 0.1785 | 19.51 | 400 | 0.6333 | 0.7717 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|