File size: 2,624 Bytes
a312974
 
 
 
 
 
 
7b3b1ec
 
 
 
 
 
 
 
 
a312974
 
 
 
 
 
 
9d876c6
a312974
9a3d1f7
 
 
a312974
 
 
9d876c6
a312974
 
9d876c6
a312974
 
9d876c6
 
 
 
 
 
 
 
 
 
 
 
 
 
a312974
 
 
 
 
 
 
 
 
 
 
 
 
 
9a3d1f7
 
 
 
 
 
 
a312974
 
 
 
 
 
 
7b3b1ec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: gbharathi80/mt5-small-finetuned-amazon-en-es
  results: []
datasets:
- amazon_reviews_multi
language:
- es
- en
metrics:
- bleu
- rouge
pipeline_tag: summarization
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# gbharathi80/mt5-small-finetuned-amazon-en-es

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an amazon reviews dataset.
It achieves the following results on the evaluation set:
- Train Loss: 4.2325
- Validation Loss: 3.4452
- Epoch: 7

## Model description

This is a fine-tuned version of the google/mt5-small model for translation tasks from English to Spanish for text summarization
## Intended uses & limitations

multi lingual text summarization. model trained using spanish and english revirwes
## Training and evaluation data

DatasetDict({
    train: Dataset({
        features: ['review_id', 'product_id', 'reviewer_id', 'stars', 'review_body', 'review_title', 'language', 'product_category'],
        num_rows: 200000
    })
    validation: Dataset({
        features: ['review_id', 'product_id', 'reviewer_id', 'stars', 'review_body', 'review_title', 'language', 'product_category'],
        num_rows: 5000
    })
    test: Dataset({
        features: ['review_id', 'product_id', 'reviewer_id', 'stars', 'review_body', 'review_title', 'language', 'product_category'],
        num_rows: 5000
    })
})

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 9672, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 10.7747    | 4.7510          | 0     |
| 6.3001     | 4.0096          | 1     |
| 5.4388     | 3.7376          | 2     |
| 4.9710     | 3.6136          | 3     |
| 4.6689     | 3.5349          | 4     |
| 4.4622     | 3.4885          | 5     |
| 4.3101     | 3.4537          | 6     |
| 4.2325     | 3.4452          | 7     |


### Framework versions

- Transformers 4.21.1
- TensorFlow 2.9.1
- Datasets 2.4.0
- Tokenizers 0.12.1