File size: 2,624 Bytes
a312974 7b3b1ec a312974 9d876c6 a312974 9a3d1f7 a312974 9d876c6 a312974 9d876c6 a312974 9d876c6 a312974 9a3d1f7 a312974 7b3b1ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: gbharathi80/mt5-small-finetuned-amazon-en-es
results: []
datasets:
- amazon_reviews_multi
language:
- es
- en
metrics:
- bleu
- rouge
pipeline_tag: summarization
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# gbharathi80/mt5-small-finetuned-amazon-en-es
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an amazon reviews dataset.
It achieves the following results on the evaluation set:
- Train Loss: 4.2325
- Validation Loss: 3.4452
- Epoch: 7
## Model description
This is a fine-tuned version of the google/mt5-small model for translation tasks from English to Spanish for text summarization
## Intended uses & limitations
multi lingual text summarization. model trained using spanish and english revirwes
## Training and evaluation data
DatasetDict({
train: Dataset({
features: ['review_id', 'product_id', 'reviewer_id', 'stars', 'review_body', 'review_title', 'language', 'product_category'],
num_rows: 200000
})
validation: Dataset({
features: ['review_id', 'product_id', 'reviewer_id', 'stars', 'review_body', 'review_title', 'language', 'product_category'],
num_rows: 5000
})
test: Dataset({
features: ['review_id', 'product_id', 'reviewer_id', 'stars', 'review_body', 'review_title', 'language', 'product_category'],
num_rows: 5000
})
})
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 9672, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 10.7747 | 4.7510 | 0 |
| 6.3001 | 4.0096 | 1 |
| 5.4388 | 3.7376 | 2 |
| 4.9710 | 3.6136 | 3 |
| 4.6689 | 3.5349 | 4 |
| 4.4622 | 3.4885 | 5 |
| 4.3101 | 3.4537 | 6 |
| 4.2325 | 3.4452 | 7 |
### Framework versions
- Transformers 4.21.1
- TensorFlow 2.9.1
- Datasets 2.4.0
- Tokenizers 0.12.1 |