Edit model card

bart-paraphrase-pubmed-1.1

This model is a fine-tuned version of facebook/bart-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4236
  • Rouge2 Precision: 0.8482
  • Rouge2 Recall: 0.673
  • Rouge2 Fmeasure: 0.7347

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge2 Precision Rouge2 Recall Rouge2 Fmeasure
0.6534 1.0 663 0.4641 0.8448 0.6691 0.7313
0.5078 2.0 1326 0.4398 0.8457 0.6719 0.7333
0.4367 3.0 1989 0.4274 0.847 0.6717 0.7335
0.3575 4.0 2652 0.4149 0.8481 0.6733 0.735
0.3319 5.0 3315 0.4170 0.8481 0.6724 0.7343
0.3179 6.0 3978 0.4264 0.8484 0.6733 0.735
0.2702 7.0 4641 0.4207 0.8489 0.6732 0.7353
0.2606 8.0 5304 0.4205 0.8487 0.6725 0.7347
0.2496 9.0 5967 0.4247 0.8466 0.6717 0.7334
0.2353 10.0 6630 0.4236 0.8482 0.673 0.7347

Framework versions

  • Transformers 4.12.3
  • Pytorch 1.9.0+cu111
  • Datasets 1.15.1
  • Tokenizers 0.10.3
Downloads last month
0
Hosted inference API
This model can be loaded on the Inference API on-demand.