File size: 14,630 Bytes
73d00ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2a1cb9a940>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2a1cb9a9d0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2a1cb9aa60>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2a1cb9aaf0>",
"_build": "<function ActorCriticPolicy._build at 0x7f2a1cb9ab80>",
"forward": "<function ActorCriticPolicy.forward at 0x7f2a1cb9ac10>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2a1cb9aca0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f2a1cb9ad30>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2a1cb9adc0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2a1cb9ae50>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2a1cb9aee0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f2a1cc0fcf0>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 1015808,
"_total_timesteps": 1000000.0,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1672193707583758702,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVmwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaS9ob21lL29lbS8ucHllbnYvdmVyc2lvbnMvMy45L2VudnMvcmxfY2xhc3MvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEBeKL7cAVS8hfWkOrHrsDj8Q709wvnUuQAAgD8AAIA/ZgbwPPG4rT8jgro+l52IvghTeTx9rNo9AAAAAAAAAAAa+yc9uNTXPkk9oLwetf69bPDQu9P69TwAAAAAAAAAADN16rxct2+66wI5OfxucjRJh3M7o55XuAAAgD8AAIA/QJ3WPSWWUD5rFri9DIcfvtiLErsxtMC8AAAAAAAAAAAz9Eo9uACsu37EOjwcp5I8pjzzvKbteD0AAIA/AACAP9pc2L24ZvG5kJ4fOHenmDO9QT2704Q8twAAgD8AAIA/RhYbvhyvcT8QNXK8YJA9vpspQb1ubIO9AAAAAAAAAADmZJy9e/6Sum4HRzt6ZoE2Ig7jOfIMZLoAAIA/AACAPwDeRb09akG5ClvkNq37mrE+PgO8rN4ItgAAgD8AAIA/wOkFvtXxyj5CYwG9/TVbvugfeL1+A7U9AAAAAAAAAADz/Wi+X1M9PzwRpT3LEHi+meWEuz4HtzwAAAAAAAAAADOBRbwpGFy6Mp5Cs1VHPrBKoVw7Jny+MwAAgD8AAIA/mlWCvQWowrtaqJY8QRQcPaTwDr3bJwA+AACAPwAAgD+AURi+Sy6IPYbdQz481hi+Q5aEPZ7VtTwAAAAAAAAAAOB1Jr6UFYS861n2uxcQjrq0/ec9/othOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3dJqSFwmYECUhpRSlIwBbJRN6AOMAXSUR0CNG2yTINmUdX2UKGgGaAloD0MI1qwzvq8uZUCUhpRSlGgVTegDaBZHQI0iYLThHb11fZQoaAZoCWgPQwh8tg4O9t1kQJSGlFKUaBVN6ANoFkdAjSikP1+RYHV9lChoBmgJaA9DCFggelImiFVAlIaUUpRoFU3oA2gWR0CNMx20Re1KdX2UKGgGaAloD0MILj2a6slOY0CUhpRSlGgVTegDaBZHQI0+1clgMMJ1fZQoaAZoCWgPQwjPaKuSyFNiQJSGlFKUaBVN6ANoFkdAjT+VSwW30HV9lChoBmgJaA9DCFaBWgwe/1pAlIaUUpRoFU3oA2gWR0CNSv9Q40djdX2UKGgGaAloD0MIkxgEVg6mYkCUhpRSlGgVTegDaBZHQI1LZSJj2Bd1fZQoaAZoCWgPQwjt0/GYgcReQJSGlFKUaBVN6ANoFkdAjVnvMB6rvXV9lChoBmgJaA9DCOp29pUHyV5AlIaUUpRoFU3oA2gWR0CNW8Dp1RtQdX2UKGgGaAloD0MID37iAHqZY0CUhpRSlGgVTegDaBZHQI1nnEZR8+l1fZQoaAZoCWgPQwgv205bI0taQJSGlFKUaBVN6ANoFkdAjWfP91loUXV9lChoBmgJaA9DCP0RhgFLlmJAlIaUUpRoFU3oA2gWR0CNdDKbrkbQdX2UKGgGaAloD0MIiiDOwwlXYUCUhpRSlGgVTegDaBZHQI2MfezlcQl1fZQoaAZoCWgPQwir6A/NPCpkQJSGlFKUaBVN6ANoFkdAjY3hWo3rEHV9lChoBmgJaA9DCJ+QnbexcWBAlIaUUpRoFU3oA2gWR0CNjkQOFxn4dX2UKGgGaAloD0MIO4+K/zvQYECUhpRSlGgVTegDaBZHQI2RVfLLZBd1fZQoaAZoCWgPQwjylNV0PdRlQJSGlFKUaBVN6ANoFkdAjZjvDpC8e3V9lChoBmgJaA9DCFUWhV2UF2JAlIaUUpRoFU3oA2gWR0CNnucABDG+dX2UKGgGaAloD0MIOEvJcpJnbUCUhpRSlGgVTVECaBZHQI2iB1Tzd1x1fZQoaAZoCWgPQwj8/zhhwgVlQJSGlFKUaBVN6ANoFkdAjafvjfek6HV9lChoBmgJaA9DCHGuYYbGeV5AlIaUUpRoFU3oA2gWR0CNsnGTcIqtdX2UKGgGaAloD0MItD7lmKxLZECUhpRSlGgVTegDaBZHQI2zEFnqVyF1fZQoaAZoCWgPQwgVViqoqLr5P5SGlFKUaBVNLQFoFkdAjbRtiH6/I3V9lChoBmgJaA9DCHxgx38B92RAlIaUUpRoFU3oA2gWR0CNu94fwI+odX2UKGgGaAloD0MIp+uJrguIW0CUhpRSlGgVTegDaBZHQI28L8WKuSx1fZQoaAZoCWgPQwgxJZLoZWFsQJSGlFKUaBVNIQJoFkdAjb/VIZqEe3V9lChoBmgJaA9DCGoUkszqlWRAlIaUUpRoFU3oA2gWR0CNx0+M6zVudX2UKGgGaAloD0MI2liJeVYeZUCUhpRSlGgVTegDaBZHQI3RgZGax5d1fZQoaAZoCWgPQwhaEqCmlmphQJSGlFKUaBVN6ANoFkdAjdG0D+zdDnV9lChoBmgJaA9DCENU4c/wD2ZAlIaUUpRoFU3oA2gWR0CN3OIsRQJpdX2UKGgGaAloD0MIQieEDrpuYkCUhpRSlGgVTegDaBZHQI306XMQmNR1fZQoaAZoCWgPQwh4KAr0iTBrQJSGlFKUaBVNOQNoFkdAjfZEwN9YwXV9lChoBmgJaA9DCBMM5xpmRV1AlIaUUpRoFU3oA2gWR0CN9mGLUCq7dX2UKGgGaAloD0MIfH2tS40oZECUhpRSlGgVTegDaBZHQI35RvFWGRF1fZQoaAZoCWgPQwjx2To42LVjQJSGlFKUaBVN6ANoFkdAjglI4lyBCnV9lChoBmgJaA9DCHQHsTMF/2FAlIaUUpRoFU3oA2gWR0COD87rcCYDdX2UKGgGaAloD0MI1SMNbmv/OkCUhpRSlGgVTRwBaBZHQI4UZBmf5DZ1fZQoaAZoCWgPQwgSa/EpgKJuQJSGlFKUaBVN3wFoFkdAjhdyad+Xq3V9lChoBmgJaA9DCOYg6GjV72pAlIaUUpRoFU1hAmgWR0COGNog3cYZdX2UKGgGaAloD0MINdHno4yzY0CUhpRSlGgVTegDaBZHQI4bPIn0Cih1fZQoaAZoCWgPQwjT+lsC8OtiQJSGlFKUaBVN6ANoFkdAjhvM4T9KmXV9lChoBmgJaA9DCDpY/+cw4mBAlIaUUpRoFU3oA2gWR0COHTm/WUbDdX2UKGgGaAloD0MIf9qoTgeaYkCUhpRSlGgVTegDaBZHQI4j1v60pmV1fZQoaAZoCWgPQwhbfXVVoFNiQJSGlFKUaBVN6ANoFkdAjiQLVe8f3nV9lChoBmgJaA9DCFlqvd9ov15AlIaUUpRoFU3oA2gWR0COJwVbA1vVdX2UKGgGaAloD0MIstr8v+oYZUCUhpRSlGgVTegDaBZHQI4tz4zrNW51fZQoaAZoCWgPQwiBzM6id45jQJSGlFKUaBVN6ANoFkdAjjhH3lCCz3V9lChoBmgJaA9DCH6qCg1EM29AlIaUUpRoFU0zAmgWR0COOq8tf5UMdX2UKGgGaAloD0MIiLoPQOrAcECUhpRSlGgVTa4BaBZHQI48fWxyGSJ1fZQoaAZoCWgPQwgst7QaEh1uQJSGlFKUaBVNNQNoFkdAjj+A0Kqn33V9lChoBmgJaA9DCBFy3v/HjUNAlIaUUpRoFU0qAWgWR0COSja0x/NJdX2UKGgGaAloD0MIwono19ZcX0CUhpRSlGgVTegDaBZHQI5aia3I+4d1fZQoaAZoCWgPQwio4sYt5oNdQJSGlFKUaBVN6ANoFkdAjlvL4nF5wHV9lChoBmgJaA9DCBuBeF2/Pm5AlIaUUpRoFU1yAmgWR0CObUFzuF6BdX2UKGgGaAloD0MICVBTy1bGakCUhpRSlGgVTQIDaBZHQI538aESM991fZQoaAZoCWgPQwhI4XoUrm5iQJSGlFKUaBVN6ANoFkdAjni69K28ZnV9lChoBmgJaA9DCJQVw9UBtDJAlIaUUpRoFU0ZAWgWR0COeaAFxGUfdX2UKGgGaAloD0MIfsSvWEN1a0CUhpRSlGgVTYABaBZHQI59F0xM3611fZQoaAZoCWgPQwjSrGwfcldiQJSGlFKUaBVN6ANoFkdAjn1GKZUkwHV9lChoBmgJaA9DCMvbEU4L3GFAlIaUUpRoFU3oA2gWR0COf+/k/8l5dX2UKGgGaAloD0MIQpjbvdwybkCUhpRSlGgVTYABaBZHQI6B7aEi+td1fZQoaAZoCWgPQwilhjYAG6pjQJSGlFKUaBVN6ANoFkdAjoMiADq4Y3V9lChoBmgJaA9DCMXiN4UVTWFAlIaUUpRoFU3oA2gWR0COg6EYfnwHdX2UKGgGaAloD0MI4NkeveEAYUCUhpRSlGgVTegDaBZHQI6EzeZXuE51fZQoaAZoCWgPQwhu+x711/FYQJSGlFKUaBVN6ANoFkdAjopwYcebNXV9lChoBmgJaA9DCMcvvJLkzW5AlIaUUpRoFU3fAmgWR0COiwrVe8f3dX2UKGgGaAloD0MIhetRuB4xb0CUhpRSlGgVTQ4DaBZHQI6Rt+w1R+B1fZQoaAZoCWgPQwjaqiSyD4hZQJSGlFKUaBVN6ANoFkdAjqBvRzBAOnV9lChoBmgJaA9DCP8G7dVHmm9AlIaUUpRoFU27AWgWR0COoamm+CbudX2UKGgGaAloD0MIzH9Iv/0ObkCUhpRSlGgVTboBaBZHQI6kugSOBDp1fZQoaAZoCWgPQwgK9Ik8SQRgQJSGlFKUaBVN6ANoFkdAjqTyIHkcTHV9lChoBmgJaA9DCF73ViTmXHBAlIaUUpRoFU1aAmgWR0COxbdfLLZBdX2UKGgGaAloD0MIFHe8ye/dbkCUhpRSlGgVTasBaBZHQI7JkGFBY3h1fZQoaAZoCWgPQwhM3ZVdMLFsQJSGlFKUaBVNhgJoFkdAjsmxRl6JInV9lChoBmgJaA9DCLR3RlsV2G5AlIaUUpRoFU2GA2gWR0COzcdoWYWtdX2UKGgGaAloD0MIUYaqmEp5cECUhpRSlGgVTTkCaBZHQI7OUmx+rlx1fZQoaAZoCWgPQwjqBDQRtsJvQJSGlFKUaBVNnAFoFkdAjtrGR3eN1nV9lChoBmgJaA9DCE5Ev7Z+T25AlIaUUpRoFU3ZAmgWR0CO3aM6zVtodX2UKGgGaAloD0MI8zl3u15ZXkCUhpRSlGgVTegDaBZHQI7hrpC8e0Z1fZQoaAZoCWgPQwgUyy2thuNhQJSGlFKUaBVN6ANoFkdAjuJTMA3kxXV9lChoBmgJaA9DCODZHr3hf19AlIaUUpRoFU3oA2gWR0CO4yZuyeI3dX2UKGgGaAloD0MIX3zRHq84cECUhpRSlGgVTXcDaBZHQI7kqX6ZYxN1fZQoaAZoCWgPQwh5Wn7gqpRiQJSGlFKUaBVN6ANoFkdAjuYJzT4L1HV9lChoBmgJaA9DCMKmzqPiVydAlIaUUpRoFU0FAWgWR0CO51qhUR4AdX2UKGgGaAloD0MI7L34oj0obkCUhpRSlGgVTT4CaBZHQI7pYP/aQFN1fZQoaAZoCWgPQwjNPo9RnhBcQJSGlFKUaBVN6ANoFkdAjunu4G2TgXV9lChoBmgJaA9DCEChnj4C0G1AlIaUUpRoFU2aAmgWR0CO7JXrdFfBdX2UKGgGaAloD0MIN+LJbiascECUhpRSlGgVTbABaBZHQI7v761stTV1fZQoaAZoCWgPQwiNYU7Q5sxwQJSGlFKUaBVNGgJoFkdAjvyNo8IRiHV9lChoBmgJaA9DCJ7TLNCuI3BAlIaUUpRoFU25AWgWR0CPAknCO3lTdX2UKGgGaAloD0MIZOjYQeUrcECUhpRSlGgVTaEBaBZHQI8EXiJfpll1fZQoaAZoCWgPQwgeNpGZC3puQJSGlFKUaBVNxwJoFkdAjwX6hxo7FXV9lChoBmgJaA9DCOdR8X/Hv2xAlIaUUpRoFU1oAWgWR0CPCHqREF4cdX2UKGgGaAloD0MIO/922S+FY0CUhpRSlGgVTegDaBZHQI8LUL+glGB1fZQoaAZoCWgPQwgzG2SSkS9DQJSGlFKUaBVNRwFoFkdAjw3pxNqQBHV9lChoBmgJaA9DCJ7Q60/iTm9AlIaUUpRoFU1mAmgWR0CPD9QemvW6dX2UKGgGaAloD0MIU8vW+qIJbkCUhpRSlGgVTTUCaBZHQI8UKEHt4Rp1fZQoaAZoCWgPQwhyjGSP0BFyQJSGlFKUaBVNegJoFkdAjxgJEYwZfnV9lChoBmgJaA9DCNofKLdtum9AlIaUUpRoFU3lAmgWR0CPHhSrHU+cdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 620,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 512,
"n_epochs": 10,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVmwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaS9ob21lL29lbS8ucHllbnYvdmVyc2lvbnMvMy45L2VudnMvcmxfY2xhc3MvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
} |