gauravkuppa
commited on
Commit
•
73d00ab
1
Parent(s):
52f01fb
original model
Browse files- README.md +37 -0
- config.json +1 -0
- gk-lunar.zip +3 -0
- gk-lunar/_stable_baselines3_version +1 -0
- gk-lunar/data +94 -0
- gk-lunar/policy.optimizer.pth +3 -0
- gk-lunar/policy.pth +3 -0
- gk-lunar/pytorch_variables.pth +3 -0
- gk-lunar/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 215.48 +/- 77.62
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2a1cb9a940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2a1cb9a9d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2a1cb9aa60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2a1cb9aaf0>", "_build": "<function ActorCriticPolicy._build at 0x7f2a1cb9ab80>", "forward": "<function ActorCriticPolicy.forward at 0x7f2a1cb9ac10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2a1cb9aca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2a1cb9ad30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2a1cb9adc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2a1cb9ae50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2a1cb9aee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2a1cc0fcf0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672193707583758702, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVmwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaS9ob21lL29lbS8ucHllbnYvdmVyc2lvbnMvMy45L2VudnMvcmxfY2xhc3MvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEBeKL7cAVS8hfWkOrHrsDj8Q709wvnUuQAAgD8AAIA/ZgbwPPG4rT8jgro+l52IvghTeTx9rNo9AAAAAAAAAAAa+yc9uNTXPkk9oLwetf69bPDQu9P69TwAAAAAAAAAADN16rxct2+66wI5OfxucjRJh3M7o55XuAAAgD8AAIA/QJ3WPSWWUD5rFri9DIcfvtiLErsxtMC8AAAAAAAAAAAz9Eo9uACsu37EOjwcp5I8pjzzvKbteD0AAIA/AACAP9pc2L24ZvG5kJ4fOHenmDO9QT2704Q8twAAgD8AAIA/RhYbvhyvcT8QNXK8YJA9vpspQb1ubIO9AAAAAAAAAADmZJy9e/6Sum4HRzt6ZoE2Ig7jOfIMZLoAAIA/AACAPwDeRb09akG5ClvkNq37mrE+PgO8rN4ItgAAgD8AAIA/wOkFvtXxyj5CYwG9/TVbvugfeL1+A7U9AAAAAAAAAADz/Wi+X1M9PzwRpT3LEHi+meWEuz4HtzwAAAAAAAAAADOBRbwpGFy6Mp5Cs1VHPrBKoVw7Jny+MwAAgD8AAIA/mlWCvQWowrtaqJY8QRQcPaTwDr3bJwA+AACAPwAAgD+AURi+Sy6IPYbdQz481hi+Q5aEPZ7VtTwAAAAAAAAAAOB1Jr6UFYS861n2uxcQjrq0/ec9/othOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3dJqSFwmYECUhpRSlIwBbJRN6AOMAXSUR0CNG2yTINmUdX2UKGgGaAloD0MI1qwzvq8uZUCUhpRSlGgVTegDaBZHQI0iYLThHb11fZQoaAZoCWgPQwh8tg4O9t1kQJSGlFKUaBVN6ANoFkdAjSikP1+RYHV9lChoBmgJaA9DCFggelImiFVAlIaUUpRoFU3oA2gWR0CNMx20Re1KdX2UKGgGaAloD0MILj2a6slOY0CUhpRSlGgVTegDaBZHQI0+1clgMMJ1fZQoaAZoCWgPQwjPaKuSyFNiQJSGlFKUaBVN6ANoFkdAjT+VSwW30HV9lChoBmgJaA9DCFaBWgwe/1pAlIaUUpRoFU3oA2gWR0CNSv9Q40djdX2UKGgGaAloD0MIkxgEVg6mYkCUhpRSlGgVTegDaBZHQI1LZSJj2Bd1fZQoaAZoCWgPQwjt0/GYgcReQJSGlFKUaBVN6ANoFkdAjVnvMB6rvXV9lChoBmgJaA9DCOp29pUHyV5AlIaUUpRoFU3oA2gWR0CNW8Dp1RtQdX2UKGgGaAloD0MID37iAHqZY0CUhpRSlGgVTegDaBZHQI1nnEZR8+l1fZQoaAZoCWgPQwgv205bI0taQJSGlFKUaBVN6ANoFkdAjWfP91loUXV9lChoBmgJaA9DCP0RhgFLlmJAlIaUUpRoFU3oA2gWR0CNdDKbrkbQdX2UKGgGaAloD0MIiiDOwwlXYUCUhpRSlGgVTegDaBZHQI2MfezlcQl1fZQoaAZoCWgPQwir6A/NPCpkQJSGlFKUaBVN6ANoFkdAjY3hWo3rEHV9lChoBmgJaA9DCJ+QnbexcWBAlIaUUpRoFU3oA2gWR0CNjkQOFxn4dX2UKGgGaAloD0MIO4+K/zvQYECUhpRSlGgVTegDaBZHQI2RVfLLZBd1fZQoaAZoCWgPQwjylNV0PdRlQJSGlFKUaBVN6ANoFkdAjZjvDpC8e3V9lChoBmgJaA9DCFUWhV2UF2JAlIaUUpRoFU3oA2gWR0CNnucABDG+dX2UKGgGaAloD0MIOEvJcpJnbUCUhpRSlGgVTVECaBZHQI2iB1Tzd1x1fZQoaAZoCWgPQwj8/zhhwgVlQJSGlFKUaBVN6ANoFkdAjafvjfek6HV9lChoBmgJaA9DCHGuYYbGeV5AlIaUUpRoFU3oA2gWR0CNsnGTcIqtdX2UKGgGaAloD0MItD7lmKxLZECUhpRSlGgVTegDaBZHQI2zEFnqVyF1fZQoaAZoCWgPQwgVViqoqLr5P5SGlFKUaBVNLQFoFkdAjbRtiH6/I3V9lChoBmgJaA9DCHxgx38B92RAlIaUUpRoFU3oA2gWR0CNu94fwI+odX2UKGgGaAloD0MIp+uJrguIW0CUhpRSlGgVTegDaBZHQI28L8WKuSx1fZQoaAZoCWgPQwgxJZLoZWFsQJSGlFKUaBVNIQJoFkdAjb/VIZqEe3V9lChoBmgJaA9DCGoUkszqlWRAlIaUUpRoFU3oA2gWR0CNx0+M6zVudX2UKGgGaAloD0MI2liJeVYeZUCUhpRSlGgVTegDaBZHQI3RgZGax5d1fZQoaAZoCWgPQwhaEqCmlmphQJSGlFKUaBVN6ANoFkdAjdG0D+zdDnV9lChoBmgJaA9DCENU4c/wD2ZAlIaUUpRoFU3oA2gWR0CN3OIsRQJpdX2UKGgGaAloD0MIQieEDrpuYkCUhpRSlGgVTegDaBZHQI306XMQmNR1fZQoaAZoCWgPQwh4KAr0iTBrQJSGlFKUaBVNOQNoFkdAjfZEwN9YwXV9lChoBmgJaA9DCBMM5xpmRV1AlIaUUpRoFU3oA2gWR0CN9mGLUCq7dX2UKGgGaAloD0MIfH2tS40oZECUhpRSlGgVTegDaBZHQI35RvFWGRF1fZQoaAZoCWgPQwjx2To42LVjQJSGlFKUaBVN6ANoFkdAjglI4lyBCnV9lChoBmgJaA9DCHQHsTMF/2FAlIaUUpRoFU3oA2gWR0COD87rcCYDdX2UKGgGaAloD0MI1SMNbmv/OkCUhpRSlGgVTRwBaBZHQI4UZBmf5DZ1fZQoaAZoCWgPQwgSa/EpgKJuQJSGlFKUaBVN3wFoFkdAjhdyad+Xq3V9lChoBmgJaA9DCOYg6GjV72pAlIaUUpRoFU1hAmgWR0COGNog3cYZdX2UKGgGaAloD0MINdHno4yzY0CUhpRSlGgVTegDaBZHQI4bPIn0Cih1fZQoaAZoCWgPQwjT+lsC8OtiQJSGlFKUaBVN6ANoFkdAjhvM4T9KmXV9lChoBmgJaA9DCDpY/+cw4mBAlIaUUpRoFU3oA2gWR0COHTm/WUbDdX2UKGgGaAloD0MIf9qoTgeaYkCUhpRSlGgVTegDaBZHQI4j1v60pmV1fZQoaAZoCWgPQwhbfXVVoFNiQJSGlFKUaBVN6ANoFkdAjiQLVe8f3nV9lChoBmgJaA9DCFlqvd9ov15AlIaUUpRoFU3oA2gWR0COJwVbA1vVdX2UKGgGaAloD0MIstr8v+oYZUCUhpRSlGgVTegDaBZHQI4tz4zrNW51fZQoaAZoCWgPQwiBzM6id45jQJSGlFKUaBVN6ANoFkdAjjhH3lCCz3V9lChoBmgJaA9DCH6qCg1EM29AlIaUUpRoFU0zAmgWR0COOq8tf5UMdX2UKGgGaAloD0MIiLoPQOrAcECUhpRSlGgVTa4BaBZHQI48fWxyGSJ1fZQoaAZoCWgPQwgst7QaEh1uQJSGlFKUaBVNNQNoFkdAjj+A0Kqn33V9lChoBmgJaA9DCBFy3v/HjUNAlIaUUpRoFU0qAWgWR0COSja0x/NJdX2UKGgGaAloD0MIwono19ZcX0CUhpRSlGgVTegDaBZHQI5aia3I+4d1fZQoaAZoCWgPQwio4sYt5oNdQJSGlFKUaBVN6ANoFkdAjlvL4nF5wHV9lChoBmgJaA9DCBuBeF2/Pm5AlIaUUpRoFU1yAmgWR0CObUFzuF6BdX2UKGgGaAloD0MICVBTy1bGakCUhpRSlGgVTQIDaBZHQI538aESM991fZQoaAZoCWgPQwhI4XoUrm5iQJSGlFKUaBVN6ANoFkdAjni69K28ZnV9lChoBmgJaA9DCJQVw9UBtDJAlIaUUpRoFU0ZAWgWR0COeaAFxGUfdX2UKGgGaAloD0MIfsSvWEN1a0CUhpRSlGgVTYABaBZHQI59F0xM3611fZQoaAZoCWgPQwjSrGwfcldiQJSGlFKUaBVN6ANoFkdAjn1GKZUkwHV9lChoBmgJaA9DCMvbEU4L3GFAlIaUUpRoFU3oA2gWR0COf+/k/8l5dX2UKGgGaAloD0MIQpjbvdwybkCUhpRSlGgVTYABaBZHQI6B7aEi+td1fZQoaAZoCWgPQwilhjYAG6pjQJSGlFKUaBVN6ANoFkdAjoMiADq4Y3V9lChoBmgJaA9DCMXiN4UVTWFAlIaUUpRoFU3oA2gWR0COg6EYfnwHdX2UKGgGaAloD0MI4NkeveEAYUCUhpRSlGgVTegDaBZHQI6EzeZXuE51fZQoaAZoCWgPQwhu+x711/FYQJSGlFKUaBVN6ANoFkdAjopwYcebNXV9lChoBmgJaA9DCMcvvJLkzW5AlIaUUpRoFU3fAmgWR0COiwrVe8f3dX2UKGgGaAloD0MIhetRuB4xb0CUhpRSlGgVTQ4DaBZHQI6Rt+w1R+B1fZQoaAZoCWgPQwjaqiSyD4hZQJSGlFKUaBVN6ANoFkdAjqBvRzBAOnV9lChoBmgJaA9DCP8G7dVHmm9AlIaUUpRoFU27AWgWR0COoamm+CbudX2UKGgGaAloD0MIzH9Iv/0ObkCUhpRSlGgVTboBaBZHQI6kugSOBDp1fZQoaAZoCWgPQwgK9Ik8SQRgQJSGlFKUaBVN6ANoFkdAjqTyIHkcTHV9lChoBmgJaA9DCF73ViTmXHBAlIaUUpRoFU1aAmgWR0COxbdfLLZBdX2UKGgGaAloD0MIFHe8ye/dbkCUhpRSlGgVTasBaBZHQI7JkGFBY3h1fZQoaAZoCWgPQwhM3ZVdMLFsQJSGlFKUaBVNhgJoFkdAjsmxRl6JInV9lChoBmgJaA9DCLR3RlsV2G5AlIaUUpRoFU2GA2gWR0COzcdoWYWtdX2UKGgGaAloD0MIUYaqmEp5cECUhpRSlGgVTTkCaBZHQI7OUmx+rlx1fZQoaAZoCWgPQwjqBDQRtsJvQJSGlFKUaBVNnAFoFkdAjtrGR3eN1nV9lChoBmgJaA9DCE5Ev7Z+T25AlIaUUpRoFU3ZAmgWR0CO3aM6zVtodX2UKGgGaAloD0MI8zl3u15ZXkCUhpRSlGgVTegDaBZHQI7hrpC8e0Z1fZQoaAZoCWgPQwgUyy2thuNhQJSGlFKUaBVN6ANoFkdAjuJTMA3kxXV9lChoBmgJaA9DCODZHr3hf19AlIaUUpRoFU3oA2gWR0CO4yZuyeI3dX2UKGgGaAloD0MIX3zRHq84cECUhpRSlGgVTXcDaBZHQI7kqX6ZYxN1fZQoaAZoCWgPQwh5Wn7gqpRiQJSGlFKUaBVN6ANoFkdAjuYJzT4L1HV9lChoBmgJaA9DCMKmzqPiVydAlIaUUpRoFU0FAWgWR0CO51qhUR4AdX2UKGgGaAloD0MI7L34oj0obkCUhpRSlGgVTT4CaBZHQI7pYP/aQFN1fZQoaAZoCWgPQwjNPo9RnhBcQJSGlFKUaBVN6ANoFkdAjunu4G2TgXV9lChoBmgJaA9DCEChnj4C0G1AlIaUUpRoFU2aAmgWR0CO7JXrdFfBdX2UKGgGaAloD0MIN+LJbiascECUhpRSlGgVTbABaBZHQI7v761stTV1fZQoaAZoCWgPQwiNYU7Q5sxwQJSGlFKUaBVNGgJoFkdAjvyNo8IRiHV9lChoBmgJaA9DCJ7TLNCuI3BAlIaUUpRoFU25AWgWR0CPAknCO3lTdX2UKGgGaAloD0MIZOjYQeUrcECUhpRSlGgVTaEBaBZHQI8EXiJfpll1fZQoaAZoCWgPQwgeNpGZC3puQJSGlFKUaBVNxwJoFkdAjwX6hxo7FXV9lChoBmgJaA9DCOdR8X/Hv2xAlIaUUpRoFU1oAWgWR0CPCHqREF4cdX2UKGgGaAloD0MIO/922S+FY0CUhpRSlGgVTegDaBZHQI8LUL+glGB1fZQoaAZoCWgPQwgzG2SSkS9DQJSGlFKUaBVNRwFoFkdAjw3pxNqQBHV9lChoBmgJaA9DCJ7Q60/iTm9AlIaUUpRoFU1mAmgWR0CPD9QemvW6dX2UKGgGaAloD0MIU8vW+qIJbkCUhpRSlGgVTTUCaBZHQI8UKEHt4Rp1fZQoaAZoCWgPQwhyjGSP0BFyQJSGlFKUaBVNegJoFkdAjxgJEYwZfnV9lChoBmgJaA9DCNofKLdtum9AlIaUUpRoFU3lAmgWR0CPHhSrHU+cdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 512, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVmwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaS9ob21lL29lbS8ucHllbnYvdmVyc2lvbnMvMy45L2VudnMvcmxfY2xhc3MvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-56-generic-x86_64-with-glibc2.29 #62~20.04.1-Ubuntu SMP Tue Nov 22 21:24:20 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}
|
gk-lunar.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84448a820450cb1d65f458e656fbd16ebe55029bcdc0d825c76dc51b95988d0b
|
3 |
+
size 147134
|
gk-lunar/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
gk-lunar/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2a1cb9a940>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2a1cb9a9d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2a1cb9aa60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2a1cb9aaf0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2a1cb9ab80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2a1cb9ac10>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2a1cb9aca0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2a1cb9ad30>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2a1cb9adc0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2a1cb9ae50>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2a1cb9aee0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f2a1cc0fcf0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000.0,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1672193707583758702,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVmwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaS9ob21lL29lbS8ucHllbnYvdmVyc2lvbnMvMy45L2VudnMvcmxfY2xhc3MvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEBeKL7cAVS8hfWkOrHrsDj8Q709wvnUuQAAgD8AAIA/ZgbwPPG4rT8jgro+l52IvghTeTx9rNo9AAAAAAAAAAAa+yc9uNTXPkk9oLwetf69bPDQu9P69TwAAAAAAAAAADN16rxct2+66wI5OfxucjRJh3M7o55XuAAAgD8AAIA/QJ3WPSWWUD5rFri9DIcfvtiLErsxtMC8AAAAAAAAAAAz9Eo9uACsu37EOjwcp5I8pjzzvKbteD0AAIA/AACAP9pc2L24ZvG5kJ4fOHenmDO9QT2704Q8twAAgD8AAIA/RhYbvhyvcT8QNXK8YJA9vpspQb1ubIO9AAAAAAAAAADmZJy9e/6Sum4HRzt6ZoE2Ig7jOfIMZLoAAIA/AACAPwDeRb09akG5ClvkNq37mrE+PgO8rN4ItgAAgD8AAIA/wOkFvtXxyj5CYwG9/TVbvugfeL1+A7U9AAAAAAAAAADz/Wi+X1M9PzwRpT3LEHi+meWEuz4HtzwAAAAAAAAAADOBRbwpGFy6Mp5Cs1VHPrBKoVw7Jny+MwAAgD8AAIA/mlWCvQWowrtaqJY8QRQcPaTwDr3bJwA+AACAPwAAgD+AURi+Sy6IPYbdQz481hi+Q5aEPZ7VtTwAAAAAAAAAAOB1Jr6UFYS861n2uxcQjrq0/ec9/othOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3dJqSFwmYECUhpRSlIwBbJRN6AOMAXSUR0CNG2yTINmUdX2UKGgGaAloD0MI1qwzvq8uZUCUhpRSlGgVTegDaBZHQI0iYLThHb11fZQoaAZoCWgPQwh8tg4O9t1kQJSGlFKUaBVN6ANoFkdAjSikP1+RYHV9lChoBmgJaA9DCFggelImiFVAlIaUUpRoFU3oA2gWR0CNMx20Re1KdX2UKGgGaAloD0MILj2a6slOY0CUhpRSlGgVTegDaBZHQI0+1clgMMJ1fZQoaAZoCWgPQwjPaKuSyFNiQJSGlFKUaBVN6ANoFkdAjT+VSwW30HV9lChoBmgJaA9DCFaBWgwe/1pAlIaUUpRoFU3oA2gWR0CNSv9Q40djdX2UKGgGaAloD0MIkxgEVg6mYkCUhpRSlGgVTegDaBZHQI1LZSJj2Bd1fZQoaAZoCWgPQwjt0/GYgcReQJSGlFKUaBVN6ANoFkdAjVnvMB6rvXV9lChoBmgJaA9DCOp29pUHyV5AlIaUUpRoFU3oA2gWR0CNW8Dp1RtQdX2UKGgGaAloD0MID37iAHqZY0CUhpRSlGgVTegDaBZHQI1nnEZR8+l1fZQoaAZoCWgPQwgv205bI0taQJSGlFKUaBVN6ANoFkdAjWfP91loUXV9lChoBmgJaA9DCP0RhgFLlmJAlIaUUpRoFU3oA2gWR0CNdDKbrkbQdX2UKGgGaAloD0MIiiDOwwlXYUCUhpRSlGgVTegDaBZHQI2MfezlcQl1fZQoaAZoCWgPQwir6A/NPCpkQJSGlFKUaBVN6ANoFkdAjY3hWo3rEHV9lChoBmgJaA9DCJ+QnbexcWBAlIaUUpRoFU3oA2gWR0CNjkQOFxn4dX2UKGgGaAloD0MIO4+K/zvQYECUhpRSlGgVTegDaBZHQI2RVfLLZBd1fZQoaAZoCWgPQwjylNV0PdRlQJSGlFKUaBVN6ANoFkdAjZjvDpC8e3V9lChoBmgJaA9DCFUWhV2UF2JAlIaUUpRoFU3oA2gWR0CNnucABDG+dX2UKGgGaAloD0MIOEvJcpJnbUCUhpRSlGgVTVECaBZHQI2iB1Tzd1x1fZQoaAZoCWgPQwj8/zhhwgVlQJSGlFKUaBVN6ANoFkdAjafvjfek6HV9lChoBmgJaA9DCHGuYYbGeV5AlIaUUpRoFU3oA2gWR0CNsnGTcIqtdX2UKGgGaAloD0MItD7lmKxLZECUhpRSlGgVTegDaBZHQI2zEFnqVyF1fZQoaAZoCWgPQwgVViqoqLr5P5SGlFKUaBVNLQFoFkdAjbRtiH6/I3V9lChoBmgJaA9DCHxgx38B92RAlIaUUpRoFU3oA2gWR0CNu94fwI+odX2UKGgGaAloD0MIp+uJrguIW0CUhpRSlGgVTegDaBZHQI28L8WKuSx1fZQoaAZoCWgPQwgxJZLoZWFsQJSGlFKUaBVNIQJoFkdAjb/VIZqEe3V9lChoBmgJaA9DCGoUkszqlWRAlIaUUpRoFU3oA2gWR0CNx0+M6zVudX2UKGgGaAloD0MI2liJeVYeZUCUhpRSlGgVTegDaBZHQI3RgZGax5d1fZQoaAZoCWgPQwhaEqCmlmphQJSGlFKUaBVN6ANoFkdAjdG0D+zdDnV9lChoBmgJaA9DCENU4c/wD2ZAlIaUUpRoFU3oA2gWR0CN3OIsRQJpdX2UKGgGaAloD0MIQieEDrpuYkCUhpRSlGgVTegDaBZHQI306XMQmNR1fZQoaAZoCWgPQwh4KAr0iTBrQJSGlFKUaBVNOQNoFkdAjfZEwN9YwXV9lChoBmgJaA9DCBMM5xpmRV1AlIaUUpRoFU3oA2gWR0CN9mGLUCq7dX2UKGgGaAloD0MIfH2tS40oZECUhpRSlGgVTegDaBZHQI35RvFWGRF1fZQoaAZoCWgPQwjx2To42LVjQJSGlFKUaBVN6ANoFkdAjglI4lyBCnV9lChoBmgJaA9DCHQHsTMF/2FAlIaUUpRoFU3oA2gWR0COD87rcCYDdX2UKGgGaAloD0MI1SMNbmv/OkCUhpRSlGgVTRwBaBZHQI4UZBmf5DZ1fZQoaAZoCWgPQwgSa/EpgKJuQJSGlFKUaBVN3wFoFkdAjhdyad+Xq3V9lChoBmgJaA9DCOYg6GjV72pAlIaUUpRoFU1hAmgWR0COGNog3cYZdX2UKGgGaAloD0MINdHno4yzY0CUhpRSlGgVTegDaBZHQI4bPIn0Cih1fZQoaAZoCWgPQwjT+lsC8OtiQJSGlFKUaBVN6ANoFkdAjhvM4T9KmXV9lChoBmgJaA9DCDpY/+cw4mBAlIaUUpRoFU3oA2gWR0COHTm/WUbDdX2UKGgGaAloD0MIf9qoTgeaYkCUhpRSlGgVTegDaBZHQI4j1v60pmV1fZQoaAZoCWgPQwhbfXVVoFNiQJSGlFKUaBVN6ANoFkdAjiQLVe8f3nV9lChoBmgJaA9DCFlqvd9ov15AlIaUUpRoFU3oA2gWR0COJwVbA1vVdX2UKGgGaAloD0MIstr8v+oYZUCUhpRSlGgVTegDaBZHQI4tz4zrNW51fZQoaAZoCWgPQwiBzM6id45jQJSGlFKUaBVN6ANoFkdAjjhH3lCCz3V9lChoBmgJaA9DCH6qCg1EM29AlIaUUpRoFU0zAmgWR0COOq8tf5UMdX2UKGgGaAloD0MIiLoPQOrAcECUhpRSlGgVTa4BaBZHQI48fWxyGSJ1fZQoaAZoCWgPQwgst7QaEh1uQJSGlFKUaBVNNQNoFkdAjj+A0Kqn33V9lChoBmgJaA9DCBFy3v/HjUNAlIaUUpRoFU0qAWgWR0COSja0x/NJdX2UKGgGaAloD0MIwono19ZcX0CUhpRSlGgVTegDaBZHQI5aia3I+4d1fZQoaAZoCWgPQwio4sYt5oNdQJSGlFKUaBVN6ANoFkdAjlvL4nF5wHV9lChoBmgJaA9DCBuBeF2/Pm5AlIaUUpRoFU1yAmgWR0CObUFzuF6BdX2UKGgGaAloD0MICVBTy1bGakCUhpRSlGgVTQIDaBZHQI538aESM991fZQoaAZoCWgPQwhI4XoUrm5iQJSGlFKUaBVN6ANoFkdAjni69K28ZnV9lChoBmgJaA9DCJQVw9UBtDJAlIaUUpRoFU0ZAWgWR0COeaAFxGUfdX2UKGgGaAloD0MIfsSvWEN1a0CUhpRSlGgVTYABaBZHQI59F0xM3611fZQoaAZoCWgPQwjSrGwfcldiQJSGlFKUaBVN6ANoFkdAjn1GKZUkwHV9lChoBmgJaA9DCMvbEU4L3GFAlIaUUpRoFU3oA2gWR0COf+/k/8l5dX2UKGgGaAloD0MIQpjbvdwybkCUhpRSlGgVTYABaBZHQI6B7aEi+td1fZQoaAZoCWgPQwilhjYAG6pjQJSGlFKUaBVN6ANoFkdAjoMiADq4Y3V9lChoBmgJaA9DCMXiN4UVTWFAlIaUUpRoFU3oA2gWR0COg6EYfnwHdX2UKGgGaAloD0MI4NkeveEAYUCUhpRSlGgVTegDaBZHQI6EzeZXuE51fZQoaAZoCWgPQwhu+x711/FYQJSGlFKUaBVN6ANoFkdAjopwYcebNXV9lChoBmgJaA9DCMcvvJLkzW5AlIaUUpRoFU3fAmgWR0COiwrVe8f3dX2UKGgGaAloD0MIhetRuB4xb0CUhpRSlGgVTQ4DaBZHQI6Rt+w1R+B1fZQoaAZoCWgPQwjaqiSyD4hZQJSGlFKUaBVN6ANoFkdAjqBvRzBAOnV9lChoBmgJaA9DCP8G7dVHmm9AlIaUUpRoFU27AWgWR0COoamm+CbudX2UKGgGaAloD0MIzH9Iv/0ObkCUhpRSlGgVTboBaBZHQI6kugSOBDp1fZQoaAZoCWgPQwgK9Ik8SQRgQJSGlFKUaBVN6ANoFkdAjqTyIHkcTHV9lChoBmgJaA9DCF73ViTmXHBAlIaUUpRoFU1aAmgWR0COxbdfLLZBdX2UKGgGaAloD0MIFHe8ye/dbkCUhpRSlGgVTasBaBZHQI7JkGFBY3h1fZQoaAZoCWgPQwhM3ZVdMLFsQJSGlFKUaBVNhgJoFkdAjsmxRl6JInV9lChoBmgJaA9DCLR3RlsV2G5AlIaUUpRoFU2GA2gWR0COzcdoWYWtdX2UKGgGaAloD0MIUYaqmEp5cECUhpRSlGgVTTkCaBZHQI7OUmx+rlx1fZQoaAZoCWgPQwjqBDQRtsJvQJSGlFKUaBVNnAFoFkdAjtrGR3eN1nV9lChoBmgJaA9DCE5Ev7Z+T25AlIaUUpRoFU3ZAmgWR0CO3aM6zVtodX2UKGgGaAloD0MI8zl3u15ZXkCUhpRSlGgVTegDaBZHQI7hrpC8e0Z1fZQoaAZoCWgPQwgUyy2thuNhQJSGlFKUaBVN6ANoFkdAjuJTMA3kxXV9lChoBmgJaA9DCODZHr3hf19AlIaUUpRoFU3oA2gWR0CO4yZuyeI3dX2UKGgGaAloD0MIX3zRHq84cECUhpRSlGgVTXcDaBZHQI7kqX6ZYxN1fZQoaAZoCWgPQwh5Wn7gqpRiQJSGlFKUaBVN6ANoFkdAjuYJzT4L1HV9lChoBmgJaA9DCMKmzqPiVydAlIaUUpRoFU0FAWgWR0CO51qhUR4AdX2UKGgGaAloD0MI7L34oj0obkCUhpRSlGgVTT4CaBZHQI7pYP/aQFN1fZQoaAZoCWgPQwjNPo9RnhBcQJSGlFKUaBVN6ANoFkdAjunu4G2TgXV9lChoBmgJaA9DCEChnj4C0G1AlIaUUpRoFU2aAmgWR0CO7JXrdFfBdX2UKGgGaAloD0MIN+LJbiascECUhpRSlGgVTbABaBZHQI7v761stTV1fZQoaAZoCWgPQwiNYU7Q5sxwQJSGlFKUaBVNGgJoFkdAjvyNo8IRiHV9lChoBmgJaA9DCJ7TLNCuI3BAlIaUUpRoFU25AWgWR0CPAknCO3lTdX2UKGgGaAloD0MIZOjYQeUrcECUhpRSlGgVTaEBaBZHQI8EXiJfpll1fZQoaAZoCWgPQwgeNpGZC3puQJSGlFKUaBVNxwJoFkdAjwX6hxo7FXV9lChoBmgJaA9DCOdR8X/Hv2xAlIaUUpRoFU1oAWgWR0CPCHqREF4cdX2UKGgGaAloD0MIO/922S+FY0CUhpRSlGgVTegDaBZHQI8LUL+glGB1fZQoaAZoCWgPQwgzG2SSkS9DQJSGlFKUaBVNRwFoFkdAjw3pxNqQBHV9lChoBmgJaA9DCJ7Q60/iTm9AlIaUUpRoFU1mAmgWR0CPD9QemvW6dX2UKGgGaAloD0MIU8vW+qIJbkCUhpRSlGgVTTUCaBZHQI8UKEHt4Rp1fZQoaAZoCWgPQwhyjGSP0BFyQJSGlFKUaBVNegJoFkdAjxgJEYwZfnV9lChoBmgJaA9DCNofKLdtum9AlIaUUpRoFU3lAmgWR0CPHhSrHU+cdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 620,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 512,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVmwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaS9ob21lL29lbS8ucHllbnYvdmVyc2lvbnMvMy45L2VudnMvcmxfY2xhc3MvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
gk-lunar/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1947aa7865717a42dc740eb15d51464fd9f6857ae5b4730c62915bbf982cf211
|
3 |
+
size 87929
|
gk-lunar/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3eb7eebc9111e4486c96bbb954881e779fcf773fdffabd06181d899ab947eb8b
|
3 |
+
size 43201
|
gk-lunar/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
gk-lunar/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.15.0-56-generic-x86_64-with-glibc2.29 #62~20.04.1-Ubuntu SMP Tue Nov 22 21:24:20 UTC 2022
|
2 |
+
Python: 3.8.10
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.1+cu117
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.24.1
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (239 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 215.47530911398317, "std_reward": 77.62200831633666, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-27T22:08:44.705281"}
|