Uploaded model

  • Developed by: ganesha-shiisa
  • License: apache-2.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

学習過程

ベース(llm-jp/llm-jp-3-13b)に対し、

  • ichikara-instruction-003-001-1.json を 8epoch
  • elyza/ELYZA-tasks-100 を 20epoch

出力方法

model_name = "ganesha-shiisa/llm-jp-3-13b-finetune-4"

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=False,
)

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    quantization_config=bnb_config,
    device_map="auto",
)

tokenizer = AutoTokenizer.from_pretrained(
    model_name, trust_remote_code=True,
)

datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r", encoding='utf-8') as f:
    item = ""
    for line in f:
        line = line.strip()
        item += line
        if item.endswith("}"):
            datasets.append(json.loads(item))
            item = ""

results = []
for data in tqdm(datasets):

    input = data["input"]

    prompt = f"""### 指示
  {input}
  ### 回答:
  """

    tokenized_input = tokenizer.encode(
        prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
    with torch.no_grad():
        outputs = model.generate(
            tokenized_input,
            max_new_tokens=100,
            do_sample=False,
            repetition_penalty=1.2,
            pad_token_id=tokenizer.eos_token_id
        )[0]
    output = tokenizer.decode(
        outputs[tokenized_input.size(1):], skip_special_tokens=True)

    results.append({"task_id": data["task_id"],
                   "input": input, "output": output})


import re
model_name = re.sub(".*/", "", model_name)
with open(f"./{model_name}-outputs.jsonl", 'w', encoding='utf-8') as f:
    for result in results:
        # ensure_ascii=False for handling non-ASCII characters
        json.dump(result, f, ensure_ascii=False)
        f.write('\n')
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for ganesha-shiisa/llm-jp-3-13b-it-006_lora

Finetuned
(1124)
this model