librarian-bot's picture
Librarian Bot: Add base_model information to model
0b2373d
|
raw
history blame
2.36 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
base_model: prajjwal1/bert-tiny
model-index:
  - name: bert-tiny-finetuned-ner
    results:
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: conll2003
          type: conll2003
          args: conll2003
        metrics:
          - type: precision
            value: 0.8083060109289617
            name: Precision
          - type: recall
            value: 0.8273856136033113
            name: Recall
          - type: f1
            value: 0.8177345348001547
            name: F1
          - type: accuracy
            value: 0.9597597979252387
            name: Accuracy

bert-tiny-finetuned-ner

This model is a fine-tuned version of prajjwal1/bert-tiny on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1689
  • Precision: 0.8083
  • Recall: 0.8274
  • F1: 0.8177
  • Accuracy: 0.9598

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0355 1.0 878 0.1692 0.8072 0.8248 0.8159 0.9594
0.0411 2.0 1756 0.1678 0.8101 0.8277 0.8188 0.9600
0.0386 3.0 2634 0.1697 0.8103 0.8269 0.8186 0.9599
0.0373 4.0 3512 0.1694 0.8106 0.8263 0.8183 0.9600
0.0383 5.0 4390 0.1689 0.8083 0.8274 0.8177 0.9598

Framework versions

  • Transformers 4.10.0
  • Pytorch 1.9.0+cu102
  • Datasets 1.11.0
  • Tokenizers 0.10.3