Edit model card

ViTGPT2_vizwiz

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0719

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.1207 0.07 1000 0.0906
0.0916 0.14 2000 0.0861
0.0879 0.2 3000 0.0840
0.0856 0.27 4000 0.0822
0.0834 0.34 5000 0.0806
0.0817 0.41 6000 0.0795
0.0812 0.48 7000 0.0785
0.0808 0.55 8000 0.0779
0.0796 0.61 9000 0.0771
0.0786 0.68 10000 0.0767
0.0774 0.75 11000 0.0762
0.0772 0.82 12000 0.0758
0.0756 0.89 13000 0.0754
0.0759 0.96 14000 0.0750
0.0756 1.02 15000 0.0748
0.0726 1.09 16000 0.0745
0.0727 1.16 17000 0.0745
0.0715 1.23 18000 0.0742
0.0726 1.3 19000 0.0741
0.072 1.37 20000 0.0738
0.0723 1.43 21000 0.0735
0.0715 1.5 22000 0.0734
0.0724 1.57 23000 0.0732
0.0723 1.64 24000 0.0730
0.0718 1.71 25000 0.0729
0.07 1.78 26000 0.0728
0.0702 1.84 27000 0.0726
0.0704 1.91 28000 0.0725
0.0703 1.98 29000 0.0725
0.0686 2.05 30000 0.0726
0.0687 2.12 31000 0.0726
0.0688 2.19 32000 0.0724
0.0677 2.25 33000 0.0724
0.0665 2.32 34000 0.0725
0.0684 2.39 35000 0.0723
0.0678 2.46 36000 0.0722
0.0686 2.53 37000 0.0722
0.067 2.59 38000 0.0721
0.0669 2.66 39000 0.0721
0.0673 2.73 40000 0.0721
0.0673 2.8 41000 0.0720
0.0662 2.87 42000 0.0720
0.0681 2.94 43000 0.0719

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0
Downloads last month
21
Hosted inference API
Drag image file here or click to browse from your device
This model can be loaded on the Inference API on-demand.

Spaces using gagan3012/ViTGPT2_vizwiz