File size: 2,050 Bytes
99c1878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
tags:
- moe
- mixtral
- gagan3012/Mistral_arabic_dpo
- davidkim205/komt-mistral-7b-v1
- OpenBuddy/openbuddy-zephyr-7b-v14.1
- manishiitg/open-aditi-hi-v1
---

# Multilingual-mistral-asian

This model is a Mixure of Experts (MoE) made with [mergekit](https://github.com/cg123/mergekit) (mixtral branch). It uses the following base models:
* [gagan3012/Mistral_arabic_dpo](https://huggingface.co/gagan3012/Mistral_arabic_dpo)
* [davidkim205/komt-mistral-7b-v1](https://huggingface.co/davidkim205/komt-mistral-7b-v1)
* [OpenBuddy/openbuddy-zephyr-7b-v14.1](https://huggingface.co/OpenBuddy/openbuddy-zephyr-7b-v14.1)
* [manishiitg/open-aditi-hi-v1](https://huggingface.co/manishiitg/open-aditi-hi-v1)

## 🧩 Configuration

```yamlbase_model: mistralai/Mistral-7B-Instruct-v0.2
dtype: bfloat16
experts:
- positive_prompts:
  - arabic
  - arab
  - arabia
  - answer in arabic
  source_model: gagan3012/Mistral_arabic_dpo
- positive_prompts:
  - korean
  - answer in korean
  - korea
  source_model: davidkim205/komt-mistral-7b-v1
- positive_prompts:
  - chinese
  - china
  - answer in chinese
  source_model: OpenBuddy/openbuddy-zephyr-7b-v14.1
- positive_prompts:
  - hindi
  - india
  - hindu
  - answer in hindi
  source_model: manishiitg/open-aditi-hi-v1
gate_mode: hidden
```

## 💻 Usage

```python
!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "gagan3012/Multilingual-mistral-asian"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```