indobart-small
This model is a fine-tuned version of bart-large-cnn on Liputan6 dataset. See demo model here notebook.
Training procedure
Training hyperparameters
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | R1 Precision | R1 Recall | R1 Fmeasure | R2 Precision | R2 Recall | R2 Fmeasure | Rl Precision | Rl Recall | Rl Fmeasure |
---|---|---|---|---|---|---|---|---|---|---|
0.3064 | 1.0 | 0.3487 | 0.6043 | 0.4375 | 0.1318 | 0.2613 | 0.1723 | 0.3349 | 0.5833 | 0.4208 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
Usage
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Load model and tokenizer
model = AutoModelForSeq2SeqLM.from_pretrained("gaduhhartawan/indobart-base")
tokenizer = AutoTokenizer.from_pretrained("gaduhhartawan/indobart-base")
# Input article for summarization
ARTICLE_TO_SUMMARIZE = "lorem ipsum..."
# Generate summary
input_ids = tokenizer.encode(ARTICLE_TO_SUMMARIZE, return_tensors='pt')
summary_ids = model.generate(input_ids,
min_length=30,
max_length=150,
num_beams=2,
repetition_penalty=2.0,
length_penalty=0.8,
early_stopping=True,
no_repeat_ngram_size=2,
use_cache=True,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95)
# Decode the summary
summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
print("Summary: ", summary_text)
- Downloads last month
- 25
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.