indobart-small

This model is a fine-tuned version of bart-large-cnn on Liputan6 dataset. See demo model here notebook.

Training procedure

Training hyperparameters

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch R1 Precision R1 Recall R1 Fmeasure R2 Precision R2 Recall R2 Fmeasure Rl Precision Rl Recall Rl Fmeasure
0.3064 1.0 0.3487 0.6043 0.4375 0.1318 0.2613 0.1723 0.3349 0.5833 0.4208

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1

Usage

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

# Load model and tokenizer
model = AutoModelForSeq2SeqLM.from_pretrained("gaduhhartawan/indobart-base")
tokenizer = AutoTokenizer.from_pretrained("gaduhhartawan/indobart-base")

# Input article for summarization
ARTICLE_TO_SUMMARIZE = "lorem ipsum..."

# Generate summary
input_ids = tokenizer.encode(ARTICLE_TO_SUMMARIZE, return_tensors='pt')
summary_ids = model.generate(input_ids,
            min_length=30,
            max_length=150,
            num_beams=2,
            repetition_penalty=2.0,
            length_penalty=0.8,
            early_stopping=True,
            no_repeat_ngram_size=2,
            use_cache=True,
            do_sample=True,
            temperature=0.7,
            top_k=50,
            top_p=0.95)

# Decode the summary
summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
print("Summary: ", summary_text)
Downloads last month
25
Safetensors
Model size
406M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train gaduhhartawan/indobart-base