File size: 62,146 Bytes
3460021
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0649374
 
 
 
 
 
 
3460021
 
 
0649374
 
 
 
 
 
 
3460021
 
 
 
0649374
3460021
0649374
 
 
 
 
 
 
 
 
 
 
3460021
0649374
 
 
 
3460021
0649374
3460021
0649374
 
 
3460021
0649374
 
3460021
0649374
 
3460021
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0649374
 
3460021
0649374
 
3460021
0649374
3460021
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0649374
3460021
 
 
0649374
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
---

library_name: sklearn
license: mit
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: RandomForestClassifier.joblib
widget:
- structuredData:
    age:
    - 50
    - 31
    - 32
    bd2:
    - 0.627
    - 0.351
    - 0.672
    id:
    - ICU200010
    - ICU200011
    - ICU200012
    insurance:
    - 0
    - 0
    - 1
    m11:
    - 33.6
    - 26.6
    - 23.3
    pl:
    - 148
    - 85
    - 183
    pr:
    - 72
    - 66
    - 64
    prg:
    - 6
    - 1
    - 8
    sepsis:
    - Positive
    - Negative
    - Positive
    sk:
    - 35
    - 29
    - 0
    ts:
    - 0
    - 0
    - 0
---


# Model description

[More Information Needed]

## Intended uses & limitations

[More Information Needed]

## Training Procedure

[More Information Needed]

### Hyperparameters

<details>
<summary> Click to expand </summary>

| Hyperparameter                                                               | Value                                                                                                                                           |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| memory                                                                       |                                                                                                                                                 |
| steps                                                                        | [('preprocessor', ColumnTransformer(transformers=[('numerical_pipeline',<br />                                 Pipeline(steps=[('log_transformations',<br />                                                  FunctionTransformer(func=<ufunc 'log1p'>)),<br />                                                 ('imputer',<br />                                                  SimpleImputer(strategy='median')),<br />                                                 ('scaler', RobustScaler())]),<br />                                 ['prg', 'pl', 'pr', 'sk', 'ts', 'm11', 'bd2',<br />                                  'age']),<br />                                ('categorical_pipeline',<br />                                 Pipeline(steps=[('as_categorical',<br />                                                  FunctionTransformer(func=<function as_...<br />                                                                handle_unknown='infrequent_if_exist',<br />                                                                sparse_output=False))]),<br />                                 ['insurance']),<br />                                ('feature_creation_pipeline',<br />                                 Pipeline(steps=[('feature_creation',<br />                                                  FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>)),<br />                                                 ('imputer',<br />                                                  SimpleImputer(strategy='most_frequent')),<br />                                                 ('encoder',<br />                                                  OneHotEncoder(drop='first',<br />                                                                handle_unknown='infrequent_if_exist',<br />                                                                sparse_output=False))]),<br />                                 ['age'])])), ('feature-selection', SelectKBest(k='all',<br />            score_func=<function mutual_info_classif at 0x000001E7EDA4E480>)), ('classifier', RandomForestClassifier(n_jobs=-1, random_state=2024))]                                                                                                                                                 |

| verbose                                                                      | False                                                                                                                                           |

| preprocessor                                                                 | ColumnTransformer(transformers=[('numerical_pipeline',<br />                                 Pipeline(steps=[('log_transformations',<br />                                                  FunctionTransformer(func=<ufunc 'log1p'>)),<br />                                                 ('imputer',<br />                                                  SimpleImputer(strategy='median')),<br />                                                 ('scaler', RobustScaler())]),<br />                                 ['prg', 'pl', 'pr', 'sk', 'ts', 'm11', 'bd2',<br />                                  'age']),<br />                                ('categorical_pipeline',<br />                                 Pipeline(steps=[('as_categorical',<br />                                                  FunctionTransformer(func=<function as_...<br />                                                                handle_unknown='infrequent_if_exist',<br />                                                                sparse_output=False))]),<br />                                 ['insurance']),<br />                                ('feature_creation_pipeline',<br />                                 Pipeline(steps=[('feature_creation',<br />                                                  FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>)),<br />                                                 ('imputer',<br />                                                  SimpleImputer(strategy='most_frequent')),<br />                                                 ('encoder',<br />                                                  OneHotEncoder(drop='first',<br />                                                                handle_unknown='infrequent_if_exist',<br />                                                                sparse_output=False))]),<br />                                 ['age'])])                                                                                                                                                 |

| feature-selection                                                            | SelectKBest(k='all',<br />            score_func=<function mutual_info_classif at 0x000001E7EDA4E480>)                                                                                                                                                 |
| classifier                                                                   | RandomForestClassifier(n_jobs=-1, random_state=2024)                                                                                            |
| preprocessor__force_int_remainder_cols                                       | True                                                                                                                                            |

| preprocessor__n_jobs                                                         |                                                                                                                                                 |

| preprocessor__remainder                                                      | drop                                                                                                                                            |
| preprocessor__sparse_threshold                                               | 0.3                                                                                                                                             |

| preprocessor__transformer_weights                                            |                                                                                                                                                 |

| preprocessor__transformers                                                   | [('numerical_pipeline', Pipeline(steps=[('log_transformations',<br />                 FunctionTransformer(func=<ufunc 'log1p'>)),<br />                ('imputer', SimpleImputer(strategy='median')),<br />                ('scaler', RobustScaler())]), ['prg', 'pl', 'pr', 'sk', 'ts', 'm11', 'bd2', 'age']), ('categorical_pipeline', Pipeline(steps=[('as_categorical',<br />                 FunctionTransformer(func=<function as_category at 0x000001E7F1450680>)),<br />                ('imputer', SimpleImputer(strategy='most_frequent')),<br />                ('encoder',<br />                 OneHotEncoder(drop='first',<br />                               handle_unknown='infrequent_if_exist',<br />                               sparse_output=False))]), ['insurance']), ('feature_creation_pipeline', Pipeline(steps=[('feature_creation',<br />                 FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>)),<br />                ('imputer', SimpleImputer(strategy='most_frequent')),<br />                ('encoder',<br />                 OneHotEncoder(drop='first',<br />                               handle_unknown='infrequent_if_exist',<br />                               sparse_output=False))]), ['age'])]                                                                                                                                                 |

| preprocessor__verbose                                                        | False                                                                                                                                           |

| preprocessor__verbose_feature_names_out                                      | True                                                                                                                                            |
| preprocessor__numerical_pipeline                                             | Pipeline(steps=[('log_transformations',<br />                 FunctionTransformer(func=<ufunc 'log1p'>)),<br />                ('imputer', SimpleImputer(strategy='median')),<br />                ('scaler', RobustScaler())])                                                                                                                                                 |

| preprocessor__categorical_pipeline                                           | Pipeline(steps=[('as_categorical',<br />                 FunctionTransformer(func=<function as_category at 0x000001E7F1450680>)),<br />                ('imputer', SimpleImputer(strategy='most_frequent')),<br />                ('encoder',<br />                 OneHotEncoder(drop='first',<br />                               handle_unknown='infrequent_if_exist',<br />                               sparse_output=False))])                                                                                                                                                 |

| preprocessor__feature_creation_pipeline                                      | Pipeline(steps=[('feature_creation',<br />                 FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>)),<br />                ('imputer', SimpleImputer(strategy='most_frequent')),<br />                ('encoder',<br />                 OneHotEncoder(drop='first',<br />                               handle_unknown='infrequent_if_exist',<br />                               sparse_output=False))])                                                                                                                                                 |

| preprocessor__numerical_pipeline__memory                                     |                                                                                                                                                 |

| preprocessor__numerical_pipeline__steps                                      | [('log_transformations', FunctionTransformer(func=<ufunc 'log1p'>)), ('imputer', SimpleImputer(strategy='median')), ('scaler', RobustScaler())] |

| preprocessor__numerical_pipeline__verbose                                    | False                                                                                                                                           |

| preprocessor__numerical_pipeline__log_transformations                        | FunctionTransformer(func=<ufunc 'log1p'>)                                                                                                       |

| preprocessor__numerical_pipeline__imputer                                    | SimpleImputer(strategy='median')                                                                                                                |

| preprocessor__numerical_pipeline__scaler                                     | RobustScaler()                                                                                                                                  |

| preprocessor__numerical_pipeline__log_transformations__accept_sparse         | False                                                                                                                                           |

| preprocessor__numerical_pipeline__log_transformations__check_inverse         | True                                                                                                                                            |
| preprocessor__numerical_pipeline__log_transformations__feature_names_out     |                                                                                                                                                 |
| preprocessor__numerical_pipeline__log_transformations__func                  | <ufunc 'log1p'>                                                                                                                                 |
| preprocessor__numerical_pipeline__log_transformations__inv_kw_args           |                                                                                                                                                 |
| preprocessor__numerical_pipeline__log_transformations__inverse_func          |                                                                                                                                                 |

| preprocessor__numerical_pipeline__log_transformations__kw_args               |                                                                                                                                                 |

| preprocessor__numerical_pipeline__log_transformations__validate              | False                                                                                                                                           |

| preprocessor__numerical_pipeline__imputer__add_indicator                     | False                                                                                                                                           |

| preprocessor__numerical_pipeline__imputer__copy                              | True                                                                                                                                            |

| preprocessor__numerical_pipeline__imputer__fill_value                        |                                                                                                                                                 |

| preprocessor__numerical_pipeline__imputer__keep_empty_features               | False                                                                                                                                           |

| preprocessor__numerical_pipeline__imputer__missing_values                    | nan                                                                                                                                             |

| preprocessor__numerical_pipeline__imputer__strategy                          | median                                                                                                                                          |

| preprocessor__numerical_pipeline__scaler__copy                               | True                                                                                                                                            |
| preprocessor__numerical_pipeline__scaler__quantile_range                     | (25.0, 75.0)                                                                                                                                    |

| preprocessor__numerical_pipeline__scaler__unit_variance                      | False                                                                                                                                           |
| preprocessor__numerical_pipeline__scaler__with_centering                     | True                                                                                                                                            |

| preprocessor__numerical_pipeline__scaler__with_scaling                       | True                                                                                                                                            |
| preprocessor__categorical_pipeline__memory                                   |                                                                                                                                                 |

| preprocessor__categorical_pipeline__steps                                    | [('as_categorical', FunctionTransformer(func=<function as_category at 0x000001E7F1450680>)), ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist',<br />              sparse_output=False))]                                                                                                                                                 |
| preprocessor__categorical_pipeline__verbose                                  | False                                                                                                                                           |

| preprocessor__categorical_pipeline__as_categorical                           | FunctionTransformer(func=<function as_category at 0x000001E7F1450680>)                                                                          |

| preprocessor__categorical_pipeline__imputer                                  | SimpleImputer(strategy='most_frequent')                                                                                                         |
| preprocessor__categorical_pipeline__encoder                                  | OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist',<br />              sparse_output=False)                                                                                                                                                 |

| preprocessor__categorical_pipeline__as_categorical__accept_sparse            | False                                                                                                                                           |

| preprocessor__categorical_pipeline__as_categorical__check_inverse            | True                                                                                                                                            |

| preprocessor__categorical_pipeline__as_categorical__feature_names_out        |                                                                                                                                                 |

| preprocessor__categorical_pipeline__as_categorical__func                     | <function as_category at 0x000001E7F1450680>                                                                                                    |

| preprocessor__categorical_pipeline__as_categorical__inv_kw_args              |                                                                                                                                                 |

| preprocessor__categorical_pipeline__as_categorical__inverse_func             |                                                                                                                                                 |

| preprocessor__categorical_pipeline__as_categorical__kw_args                  |                                                                                                                                                 |

| preprocessor__categorical_pipeline__as_categorical__validate                 | False                                                                                                                                           |

| preprocessor__categorical_pipeline__imputer__add_indicator                   | False                                                                                                                                           |

| preprocessor__categorical_pipeline__imputer__copy                            | True                                                                                                                                            |

| preprocessor__categorical_pipeline__imputer__fill_value                      |                                                                                                                                                 |
| preprocessor__categorical_pipeline__imputer__keep_empty_features             | False                                                                                                                                           |

| preprocessor__categorical_pipeline__imputer__missing_values                  | nan                                                                                                                                             |

| preprocessor__categorical_pipeline__imputer__strategy                        | most_frequent                                                                                                                                   |

| preprocessor__categorical_pipeline__encoder__categories                      | auto                                                                                                                                            |

| preprocessor__categorical_pipeline__encoder__drop                            | first                                                                                                                                           |

| preprocessor__categorical_pipeline__encoder__dtype                           | <class 'numpy.float64'>                                                                                                                         |

| preprocessor__categorical_pipeline__encoder__feature_name_combiner           | concat                                                                                                                                          |
| preprocessor__categorical_pipeline__encoder__handle_unknown                  | infrequent_if_exist                                                                                                                             |

| preprocessor__categorical_pipeline__encoder__max_categories                  |                                                                                                                                                 |
| preprocessor__categorical_pipeline__encoder__min_frequency                   |                                                                                                                                                 |

| preprocessor__categorical_pipeline__encoder__sparse_output                   | False                                                                                                                                           |
| preprocessor__feature_creation_pipeline__memory                              |                                                                                                                                                 |
| preprocessor__feature_creation_pipeline__steps                               | [('feature_creation', FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>)), ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist',<br />              sparse_output=False))]                                                                                                                                                 |
| preprocessor__feature_creation_pipeline__verbose                             | False                                                                                                                                           |
| preprocessor__feature_creation_pipeline__feature_creation                    | FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>)                                                                     |

| preprocessor__feature_creation_pipeline__imputer                             | SimpleImputer(strategy='most_frequent')                                                                                                         |
| preprocessor__feature_creation_pipeline__encoder                             | OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist',<br />              sparse_output=False)                                                                                                                                                 |
| preprocessor__feature_creation_pipeline__feature_creation__accept_sparse     | False                                                                                                                                           |

| preprocessor__feature_creation_pipeline__feature_creation__check_inverse     | True                                                                                                                                            |
| preprocessor__feature_creation_pipeline__feature_creation__feature_names_out |                                                                                                                                                 |

| preprocessor__feature_creation_pipeline__feature_creation__func              | <function feature_creation at 0x000001E7F14514E0>                                                                                               |

| preprocessor__feature_creation_pipeline__feature_creation__inv_kw_args       |                                                                                                                                                 |

| preprocessor__feature_creation_pipeline__feature_creation__inverse_func      |                                                                                                                                                 |

| preprocessor__feature_creation_pipeline__feature_creation__kw_args           |                                                                                                                                                 |

| preprocessor__feature_creation_pipeline__feature_creation__validate          | False                                                                                                                                           |

| preprocessor__feature_creation_pipeline__imputer__add_indicator              | False                                                                                                                                           |

| preprocessor__feature_creation_pipeline__imputer__copy                       | True                                                                                                                                            |
| preprocessor__feature_creation_pipeline__imputer__fill_value                 |                                                                                                                                                 |

| preprocessor__feature_creation_pipeline__imputer__keep_empty_features        | False                                                                                                                                           |

| preprocessor__feature_creation_pipeline__imputer__missing_values             | nan                                                                                                                                             |

| preprocessor__feature_creation_pipeline__imputer__strategy                   | most_frequent                                                                                                                                   |

| preprocessor__feature_creation_pipeline__encoder__categories                 | auto                                                                                                                                            |

| preprocessor__feature_creation_pipeline__encoder__drop                       | first                                                                                                                                           |

| preprocessor__feature_creation_pipeline__encoder__dtype                      | <class 'numpy.float64'>                                                                                                                         |

| preprocessor__feature_creation_pipeline__encoder__feature_name_combiner      | concat                                                                                                                                          |

| preprocessor__feature_creation_pipeline__encoder__handle_unknown             | infrequent_if_exist                                                                                                                             |

| preprocessor__feature_creation_pipeline__encoder__max_categories             |                                                                                                                                                 |
| preprocessor__feature_creation_pipeline__encoder__min_frequency              |                                                                                                                                                 |

| preprocessor__feature_creation_pipeline__encoder__sparse_output              | False                                                                                                                                           |

| feature-selection__k                                                         | all                                                                                                                                             |
| feature-selection__score_func                                                | <function mutual_info_classif at 0x000001E7EDA4E480>                                                                                            |

| classifier__bootstrap                                                        | True                                                                                                                                            |

| classifier__ccp_alpha                                                        | 0.0                                                                                                                                             |

| classifier__class_weight                                                     |                                                                                                                                                 |

| classifier__criterion                                                        | gini                                                                                                                                            |

| classifier__max_depth                                                        |                                                                                                                                                 |
| classifier__max_features                                                     | sqrt                                                                                                                                            |

| classifier__max_leaf_nodes                                                   |                                                                                                                                                 |

| classifier__max_samples                                                      |                                                                                                                                                 |

| classifier__min_impurity_decrease                                            | 0.0                                                                                                                                             |
| classifier__min_samples_leaf                                                 | 1                                                                                                                                               |

| classifier__min_samples_split                                                | 2                                                                                                                                               |
| classifier__min_weight_fraction_leaf                                         | 0.0                                                                                                                                             |

| classifier__monotonic_cst                                                    |                                                                                                                                                 |

| classifier__n_estimators                                                     | 100                                                                                                                                             |

| classifier__n_jobs                                                           | -1                                                                                                                                              |

| classifier__oob_score                                                        | False                                                                                                                                           |
| classifier__random_state                                                     | 2024                                                                                                                                            |

| classifier__verbose                                                          | 0                                                                                                                                               |

| classifier__warm_start                                                       | False                                                                                                                                           |



</details>



### Model Plot



<style>#sk-container-id-17 {/* Definition of color scheme common for light and dark mode */--sklearn-color-text: black;--sklearn-color-line: gray;/* Definition of color scheme for unfitted estimators */--sklearn-color-unfitted-level-0: #fff5e6;--sklearn-color-unfitted-level-1: #f6e4d2;--sklearn-color-unfitted-level-2: #ffe0b3;--sklearn-color-unfitted-level-3: chocolate;/* Definition of color scheme for fitted estimators */--sklearn-color-fitted-level-0: #f0f8ff;--sklearn-color-fitted-level-1: #d4ebff;--sklearn-color-fitted-level-2: #b3dbfd;--sklearn-color-fitted-level-3: cornflowerblue;/* Specific color for light theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-icon: #696969;@media (prefers-color-scheme: dark) {/* Redefinition of color scheme for dark theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-icon: #878787;}

}#sk-container-id-17 {color: var(--sklearn-color-text);

}#sk-container-id-17 pre {padding: 0;

}#sk-container-id-17 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;

}#sk-container-id-17 div.sk-dashed-wrapped {border: 1px dashed var(--sklearn-color-line);margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: var(--sklearn-color-background);

}#sk-container-id-17 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }`but bootstrap.min.css set `[hidden] { display: none !important; }`so we also need the `!important` here to be able to override thedefault hidden behavior on the sphinx rendered scikit-learn.org.See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;

}#sk-container-id-17 div.sk-text-repr-fallback {display: none;

}div.sk-parallel-item,

div.sk-serial,

div.sk-item {/* draw centered vertical line to link estimators */background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));background-size: 2px 100%;background-repeat: no-repeat;background-position: center center;

}/* Parallel-specific style estimator block */#sk-container-id-17 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 2px solid var(--sklearn-color-text-on-default-background);flex-grow: 1;

}#sk-container-id-17 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: var(--sklearn-color-background);position: relative;

}#sk-container-id-17 div.sk-parallel-item {display: flex;flex-direction: column;

}#sk-container-id-17 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;

}#sk-container-id-17 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;

}#sk-container-id-17 div.sk-parallel-item:only-child::after {width: 0;

}/* Serial-specific style estimator block */#sk-container-id-17 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: var(--sklearn-color-background);padding-right: 1em;padding-left: 1em;

}/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is

clickable and can be expanded/collapsed.

- Pipeline and ColumnTransformer use this feature and define the default style

- Estimators will overwrite some part of the style using the `sk-estimator` class

*//* Pipeline and ColumnTransformer style (default) */#sk-container-id-17 div.sk-toggleable {/* Default theme specific background. It is overwritten whether we have aspecific estimator or a Pipeline/ColumnTransformer */background-color: var(--sklearn-color-background);

}/* Toggleable label */

#sk-container-id-17 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.5em;box-sizing: border-box;text-align: center;

}#sk-container-id-17 label.sk-toggleable__label-arrow:before {/* Arrow on the left of the label */content: "▸";float: left;margin-right: 0.25em;color: var(--sklearn-color-icon);

}#sk-container-id-17 label.sk-toggleable__label-arrow:hover:before {color: var(--sklearn-color-text);

}/* Toggleable content - dropdown */#sk-container-id-17 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);

}#sk-container-id-17 div.sk-toggleable__content.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);

}#sk-container-id-17 div.sk-toggleable__content pre {margin: 0.2em;border-radius: 0.25em;color: var(--sklearn-color-text);/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);

}#sk-container-id-17 div.sk-toggleable__content.fitted pre {/* unfitted */background-color: var(--sklearn-color-fitted-level-0);

}#sk-container-id-17 input.sk-toggleable__control:checked~div.sk-toggleable__content {/* Expand drop-down */max-height: 200px;max-width: 100%;overflow: auto;

}#sk-container-id-17 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";

}/* Pipeline/ColumnTransformer-specific style */#sk-container-id-17 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);

}#sk-container-id-17 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: var(--sklearn-color-fitted-level-2);

}/* Estimator-specific style *//* Colorize estimator box */

#sk-container-id-17 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);

}#sk-container-id-17 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {/* fitted */background-color: var(--sklearn-color-fitted-level-2);

}#sk-container-id-17 div.sk-label label.sk-toggleable__label,

#sk-container-id-17 div.sk-label label {/* The background is the default theme color */color: var(--sklearn-color-text-on-default-background);

}/* On hover, darken the color of the background */

#sk-container-id-17 div.sk-label:hover label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);

}/* Label box, darken color on hover, fitted */

#sk-container-id-17 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {color: var(--sklearn-color-text);background-color: var(--sklearn-color-fitted-level-2);

}/* Estimator label */#sk-container-id-17 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;

}#sk-container-id-17 div.sk-label-container {text-align: center;

}/* Estimator-specific */

#sk-container-id-17 div.sk-estimator {font-family: monospace;border: 1px dotted var(--sklearn-color-border-box);border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);

}#sk-container-id-17 div.sk-estimator.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);

}/* on hover */

#sk-container-id-17 div.sk-estimator:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);

}#sk-container-id-17 div.sk-estimator.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-2);

}/* Specification for estimator info (e.g. "i" and "?") *//* Common style for "i" and "?" */.sk-estimator-doc-link,

a:link.sk-estimator-doc-link,

a:visited.sk-estimator-doc-link {float: right;font-size: smaller;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1em;height: 1em;width: 1em;text-decoration: none !important;margin-left: 1ex;/* unfitted */border: var(--sklearn-color-unfitted-level-1) 1pt solid;color: var(--sklearn-color-unfitted-level-1);

}.sk-estimator-doc-link.fitted,

a:link.sk-estimator-doc-link.fitted,

a:visited.sk-estimator-doc-link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);

}/* On hover */

div.sk-estimator:hover .sk-estimator-doc-link:hover,

.sk-estimator-doc-link:hover,

div.sk-label-container:hover .sk-estimator-doc-link:hover,

.sk-estimator-doc-link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;

}div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,

.sk-estimator-doc-link.fitted:hover,

div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,

.sk-estimator-doc-link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);color: var(--sklearn-color-background);text-decoration: none;

}/* Span, style for the box shown on hovering the info icon */

.sk-estimator-doc-link span {display: none;z-index: 9999;position: relative;font-weight: normal;right: .2ex;padding: .5ex;margin: .5ex;width: min-content;min-width: 20ex;max-width: 50ex;color: var(--sklearn-color-text);box-shadow: 2pt 2pt 4pt #999;/* unfitted */background: var(--sklearn-color-unfitted-level-0);border: .5pt solid var(--sklearn-color-unfitted-level-3);

}.sk-estimator-doc-link.fitted span {/* fitted */background: var(--sklearn-color-fitted-level-0);border: var(--sklearn-color-fitted-level-3);

}.sk-estimator-doc-link:hover span {display: block;

}/* "?"-specific style due to the `<a>` HTML tag */#sk-container-id-17 a.estimator_doc_link {float: right;font-size: 1rem;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1rem;height: 1rem;width: 1rem;text-decoration: none;/* unfitted */color: var(--sklearn-color-unfitted-level-1);border: var(--sklearn-color-unfitted-level-1) 1pt solid;

}#sk-container-id-17 a.estimator_doc_link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);

}/* On hover */

#sk-container-id-17 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;

}#sk-container-id-17 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);

}

</style><div id="sk-container-id-17" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;preprocessor&#x27;,ColumnTransformer(transformers=[(&#x27;numerical_pipeline&#x27;,Pipeline(steps=[(&#x27;log_transformations&#x27;,FunctionTransformer(func=&lt;ufunc &#x27;log1p&#x27;&gt;)),(&#x27;imputer&#x27;,SimpleImputer(strategy=&#x27;median&#x27;)),(&#x27;scaler&#x27;,RobustScaler())]),[&#x27;prg&#x27;, &#x27;pl&#x27;, &#x27;pr&#x27;, &#x27;sk&#x27;,&#x27;ts&#x27;, &#x27;m11&#x27;, &#x27;bd2&#x27;, &#x27;age&#x27;]),(&#x27;categorical_pipeline&#x27;,Pipeline(steps=[(&#x27;as_categorical&#x27;,Funct...FunctionTransformer(func=&lt;function feature_creation at 0x000001E7F14514E0&gt;)),(&#x27;imputer&#x27;,SimpleImputer(strategy=&#x27;most_frequent&#x27;)),(&#x27;encoder&#x27;,OneHotEncoder(drop=&#x27;first&#x27;,handle_unknown=&#x27;infrequent_if_exist&#x27;,sparse_output=False))]),[&#x27;age&#x27;])])),(&#x27;feature-selection&#x27;,SelectKBest(k=&#x27;all&#x27;,score_func=&lt;function mutual_info_classif at 0x000001E7EDA4E480&gt;)),(&#x27;classifier&#x27;,RandomForestClassifier(n_jobs=-1, random_state=2024))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-218" type="checkbox" ><label for="sk-estimator-id-218" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;&nbsp;Pipeline<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.pipeline.Pipeline.html">?<span>Documentation for Pipeline</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>Pipeline(steps=[(&#x27;preprocessor&#x27;,ColumnTransformer(transformers=[(&#x27;numerical_pipeline&#x27;,Pipeline(steps=[(&#x27;log_transformations&#x27;,FunctionTransformer(func=&lt;ufunc &#x27;log1p&#x27;&gt;)),(&#x27;imputer&#x27;,SimpleImputer(strategy=&#x27;median&#x27;)),(&#x27;scaler&#x27;,RobustScaler())]),[&#x27;prg&#x27;, &#x27;pl&#x27;, &#x27;pr&#x27;, &#x27;sk&#x27;,&#x27;ts&#x27;, &#x27;m11&#x27;, &#x27;bd2&#x27;, &#x27;age&#x27;]),(&#x27;categorical_pipeline&#x27;,Pipeline(steps=[(&#x27;as_categorical&#x27;,Funct...FunctionTransformer(func=&lt;function feature_creation at 0x000001E7F14514E0&gt;)),(&#x27;imputer&#x27;,SimpleImputer(strategy=&#x27;most_frequent&#x27;)),(&#x27;encoder&#x27;,OneHotEncoder(drop=&#x27;first&#x27;,handle_unknown=&#x27;infrequent_if_exist&#x27;,sparse_output=False))]),[&#x27;age&#x27;])])),(&#x27;feature-selection&#x27;,SelectKBest(k=&#x27;all&#x27;,score_func=&lt;function mutual_info_classif at 0x000001E7EDA4E480&gt;)),(&#x27;classifier&#x27;,RandomForestClassifier(n_jobs=-1, random_state=2024))])</pre></div> </div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-219" type="checkbox" ><label for="sk-estimator-id-219" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;preprocessor: ColumnTransformer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.compose.ColumnTransformer.html">?<span>Documentation for preprocessor: ColumnTransformer</span></a></label><div class="sk-toggleable__content fitted"><pre>ColumnTransformer(transformers=[(&#x27;numerical_pipeline&#x27;,Pipeline(steps=[(&#x27;log_transformations&#x27;,FunctionTransformer(func=&lt;ufunc &#x27;log1p&#x27;&gt;)),(&#x27;imputer&#x27;,SimpleImputer(strategy=&#x27;median&#x27;)),(&#x27;scaler&#x27;, RobustScaler())]),[&#x27;prg&#x27;, &#x27;pl&#x27;, &#x27;pr&#x27;, &#x27;sk&#x27;, &#x27;ts&#x27;, &#x27;m11&#x27;, &#x27;bd2&#x27;,&#x27;age&#x27;]),(&#x27;categorical_pipeline&#x27;,Pipeline(steps=[(&#x27;as_categorical&#x27;,FunctionTransformer(func=&lt;function as_...handle_unknown=&#x27;infrequent_if_exist&#x27;,sparse_output=False))]),[&#x27;insurance&#x27;]),(&#x27;feature_creation_pipeline&#x27;,Pipeline(steps=[(&#x27;feature_creation&#x27;,FunctionTransformer(func=&lt;function feature_creation at 0x000001E7F14514E0&gt;)),(&#x27;imputer&#x27;,SimpleImputer(strategy=&#x27;most_frequent&#x27;)),(&#x27;encoder&#x27;,OneHotEncoder(drop=&#x27;first&#x27;,handle_unknown=&#x27;infrequent_if_exist&#x27;,sparse_output=False))]),[&#x27;age&#x27;])])</pre></div> </div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-220" type="checkbox" ><label for="sk-estimator-id-220" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">numerical_pipeline</label><div class="sk-toggleable__content fitted"><pre>[&#x27;prg&#x27;, &#x27;pl&#x27;, &#x27;pr&#x27;, &#x27;sk&#x27;, &#x27;ts&#x27;, &#x27;m11&#x27;, &#x27;bd2&#x27;, &#x27;age&#x27;]</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-221" type="checkbox" ><label for="sk-estimator-id-221" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;FunctionTransformer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.FunctionTransformer.html">?<span>Documentation for FunctionTransformer</span></a></label><div class="sk-toggleable__content fitted"><pre>FunctionTransformer(func=&lt;ufunc &#x27;log1p&#x27;&gt;)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-222" type="checkbox" ><label for="sk-estimator-id-222" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;SimpleImputer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.impute.SimpleImputer.html">?<span>Documentation for SimpleImputer</span></a></label><div class="sk-toggleable__content fitted"><pre>SimpleImputer(strategy=&#x27;median&#x27;)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-223" type="checkbox" ><label for="sk-estimator-id-223" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;RobustScaler<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.RobustScaler.html">?<span>Documentation for RobustScaler</span></a></label><div class="sk-toggleable__content fitted"><pre>RobustScaler()</pre></div> </div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-224" type="checkbox" ><label for="sk-estimator-id-224" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">categorical_pipeline</label><div class="sk-toggleable__content fitted"><pre>[&#x27;insurance&#x27;]</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-225" type="checkbox" ><label for="sk-estimator-id-225" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;FunctionTransformer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.FunctionTransformer.html">?<span>Documentation for FunctionTransformer</span></a></label><div class="sk-toggleable__content fitted"><pre>FunctionTransformer(func=&lt;function as_category at 0x000001E7F1450680&gt;)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-226" type="checkbox" ><label for="sk-estimator-id-226" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;SimpleImputer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.impute.SimpleImputer.html">?<span>Documentation for SimpleImputer</span></a></label><div class="sk-toggleable__content fitted"><pre>SimpleImputer(strategy=&#x27;most_frequent&#x27;)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-227" type="checkbox" ><label for="sk-estimator-id-227" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;OneHotEncoder<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.OneHotEncoder.html">?<span>Documentation for OneHotEncoder</span></a></label><div class="sk-toggleable__content fitted"><pre>OneHotEncoder(drop=&#x27;first&#x27;, handle_unknown=&#x27;infrequent_if_exist&#x27;,sparse_output=False)</pre></div> </div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-228" type="checkbox" ><label for="sk-estimator-id-228" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">feature_creation_pipeline</label><div class="sk-toggleable__content fitted"><pre>[&#x27;age&#x27;]</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-229" type="checkbox" ><label for="sk-estimator-id-229" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;FunctionTransformer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.FunctionTransformer.html">?<span>Documentation for FunctionTransformer</span></a></label><div class="sk-toggleable__content fitted"><pre>FunctionTransformer(func=&lt;function feature_creation at 0x000001E7F14514E0&gt;)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-230" type="checkbox" ><label for="sk-estimator-id-230" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;SimpleImputer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.impute.SimpleImputer.html">?<span>Documentation for SimpleImputer</span></a></label><div class="sk-toggleable__content fitted"><pre>SimpleImputer(strategy=&#x27;most_frequent&#x27;)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-231" type="checkbox" ><label for="sk-estimator-id-231" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;OneHotEncoder<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.OneHotEncoder.html">?<span>Documentation for OneHotEncoder</span></a></label><div class="sk-toggleable__content fitted"><pre>OneHotEncoder(drop=&#x27;first&#x27;, handle_unknown=&#x27;infrequent_if_exist&#x27;,sparse_output=False)</pre></div> </div></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-232" type="checkbox" ><label for="sk-estimator-id-232" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;SelectKBest<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.feature_selection.SelectKBest.html">?<span>Documentation for SelectKBest</span></a></label><div class="sk-toggleable__content fitted"><pre>SelectKBest(k=&#x27;all&#x27;,score_func=&lt;function mutual_info_classif at 0x000001E7EDA4E480&gt;)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-233" type="checkbox" ><label for="sk-estimator-id-233" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;RandomForestClassifier<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.ensemble.RandomForestClassifier.html">?<span>Documentation for RandomForestClassifier</span></a></label><div class="sk-toggleable__content fitted"><pre>RandomForestClassifier(n_jobs=-1, random_state=2024)</pre></div> </div></div></div></div></div></div>



## Evaluation Results



[More Information Needed]



# How to Get Started with the Model



[More Information Needed]



# Model Card Authors



This model card is written by following authors:



[More Information Needed]



# Model Card Contact



You can contact the model card authors through following channels:

[More Information Needed]



# Citation



Below you can find information related to citation.



**BibTeX:**

```

[More Information Needed]

```



# citation_bibtex



bibtex

@inproceedings{...,year={2024}}



# get_started_code



import joblib 

 clf = joblib.load(../models/RandomForestClassifier.joblib)



# model_card_authors



Gabriel Okundaye



# limitations



This model needs further feature engineering to improve the f1 weighted score. Collaborate on with me here [GitHub](https://github.com/D0nG4667/sepsis_prediction_full_stack)



# model_description



This is a RandomForestClassifier model trained on Sepsis dataset from this [kaggle dataset](https://www.kaggle.com/datasets/chaunguynnghunh/sepsis/data).



# roc_auc_curve



![roc_auc_curve](../models/huggingface/RandomForestClassifier/ROC_AUC_Curve_for_RandomForestClassifier_and_XGBClassifier_(F1-Weighted_Scores__0.778_and_0.777_respectively).webp)



# feature_importances



![feature_importances](../models/huggingface/RandomForestClassifier/Feature_Importances-_RandomForestClassifier_(F1-Weighted_Scores__0.778).webp)