gabcares commited on
Commit
3460021
·
verified ·
1 Parent(s): 8cd0233

Pushing files to the repo-gabcares/RandomForestClassifier-Sepsis from the directory- ../models/huggingface/RandomForestClassifier

Browse files
Files changed (3) hide show
  1. README.md +335 -0
  2. RandomForestClassifier.joblib +3 -0
  3. config.json +83 -0
README.md ADDED
@@ -0,0 +1,335 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sklearn
3
+ license: mit
4
+ tags:
5
+ - sklearn
6
+ - skops
7
+ - tabular-classification
8
+ model_format: pickle
9
+ model_file: RandomForestClassifier.joblib
10
+ widget:
11
+ - structuredData:
12
+ age:
13
+ - 50
14
+ - 31
15
+ - 32
16
+ bd2:
17
+ - 0.627
18
+ - 0.351
19
+ - 0.672
20
+ id:
21
+ - ICU200010
22
+ - ICU200011
23
+ - ICU200012
24
+ insurance:
25
+ - 0
26
+ - 0
27
+ - 1
28
+ m11:
29
+ - 33.6
30
+ - 26.6
31
+ - 23.3
32
+ pl:
33
+ - 148
34
+ - 85
35
+ - 183
36
+ pr:
37
+ - 72
38
+ - 66
39
+ - 64
40
+ prg:
41
+ - 6
42
+ - 1
43
+ - 8
44
+ sepsis:
45
+ - Positive
46
+ - Negative
47
+ - Positive
48
+ sk:
49
+ - 35
50
+ - 29
51
+ - 0
52
+ ts:
53
+ - 0
54
+ - 0
55
+ - 0
56
+ ---
57
+
58
+ # Model description
59
+
60
+ [More Information Needed]
61
+
62
+ ## Intended uses & limitations
63
+
64
+ [More Information Needed]
65
+
66
+ ## Training Procedure
67
+
68
+ [More Information Needed]
69
+
70
+ ### Hyperparameters
71
+
72
+ <details>
73
+ <summary> Click to expand </summary>
74
+
75
+ | Hyperparameter | Value |
76
+ |------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
77
+ | memory | |
78
+ | steps | [('preprocessor', ColumnTransformer(transformers=[('numerical_pipeline',<br /> Pipeline(steps=[('log_transformations',<br /> FunctionTransformer(func=<ufunc 'log1p'>)),<br /> ('imputer',<br /> SimpleImputer(strategy='median')),<br /> ('scaler', RobustScaler())]),<br /> ['prg', 'pl', 'pr', 'sk', 'ts', 'm11', 'bd2',<br /> 'age']),<br /> ('categorical_pipeline',<br /> Pipeline(steps=[('as_categorical',<br /> FunctionTransformer(func=<function as_...<br /> handle_unknown='infrequent_if_exist',<br /> sparse_output=False))]),<br /> ['insurance']),<br /> ('feature_creation_pipeline',<br /> Pipeline(steps=[('feature_creation',<br /> FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>)),<br /> ('imputer',<br /> SimpleImputer(strategy='most_frequent')),<br /> ('encoder',<br /> OneHotEncoder(drop='first',<br /> handle_unknown='infrequent_if_exist',<br /> sparse_output=False))]),<br /> ['age'])])), ('feature-selection', SelectKBest(k='all',<br /> score_func=<function mutual_info_classif at 0x000001E7EDA4E480>)), ('classifier', RandomForestClassifier(n_jobs=-1, random_state=2024))] |
79
+ | verbose | False |
80
+ | preprocessor | ColumnTransformer(transformers=[('numerical_pipeline',<br /> Pipeline(steps=[('log_transformations',<br /> FunctionTransformer(func=<ufunc 'log1p'>)),<br /> ('imputer',<br /> SimpleImputer(strategy='median')),<br /> ('scaler', RobustScaler())]),<br /> ['prg', 'pl', 'pr', 'sk', 'ts', 'm11', 'bd2',<br /> 'age']),<br /> ('categorical_pipeline',<br /> Pipeline(steps=[('as_categorical',<br /> FunctionTransformer(func=<function as_...<br /> handle_unknown='infrequent_if_exist',<br /> sparse_output=False))]),<br /> ['insurance']),<br /> ('feature_creation_pipeline',<br /> Pipeline(steps=[('feature_creation',<br /> FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>)),<br /> ('imputer',<br /> SimpleImputer(strategy='most_frequent')),<br /> ('encoder',<br /> OneHotEncoder(drop='first',<br /> handle_unknown='infrequent_if_exist',<br /> sparse_output=False))]),<br /> ['age'])]) |
81
+ | feature-selection | SelectKBest(k='all',<br /> score_func=<function mutual_info_classif at 0x000001E7EDA4E480>) |
82
+ | classifier | RandomForestClassifier(n_jobs=-1, random_state=2024) |
83
+ | preprocessor__force_int_remainder_cols | True |
84
+ | preprocessor__n_jobs | |
85
+ | preprocessor__remainder | drop |
86
+ | preprocessor__sparse_threshold | 0.3 |
87
+ | preprocessor__transformer_weights | |
88
+ | preprocessor__transformers | [('numerical_pipeline', Pipeline(steps=[('log_transformations',<br /> FunctionTransformer(func=<ufunc 'log1p'>)),<br /> ('imputer', SimpleImputer(strategy='median')),<br /> ('scaler', RobustScaler())]), ['prg', 'pl', 'pr', 'sk', 'ts', 'm11', 'bd2', 'age']), ('categorical_pipeline', Pipeline(steps=[('as_categorical',<br /> FunctionTransformer(func=<function as_category at 0x000001E7F1450680>)),<br /> ('imputer', SimpleImputer(strategy='most_frequent')),<br /> ('encoder',<br /> OneHotEncoder(drop='first',<br /> handle_unknown='infrequent_if_exist',<br /> sparse_output=False))]), ['insurance']), ('feature_creation_pipeline', Pipeline(steps=[('feature_creation',<br /> FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>)),<br /> ('imputer', SimpleImputer(strategy='most_frequent')),<br /> ('encoder',<br /> OneHotEncoder(drop='first',<br /> handle_unknown='infrequent_if_exist',<br /> sparse_output=False))]), ['age'])] |
89
+ | preprocessor__verbose | False |
90
+ | preprocessor__verbose_feature_names_out | True |
91
+ | preprocessor__numerical_pipeline | Pipeline(steps=[('log_transformations',<br /> FunctionTransformer(func=<ufunc 'log1p'>)),<br /> ('imputer', SimpleImputer(strategy='median')),<br /> ('scaler', RobustScaler())]) |
92
+ | preprocessor__categorical_pipeline | Pipeline(steps=[('as_categorical',<br /> FunctionTransformer(func=<function as_category at 0x000001E7F1450680>)),<br /> ('imputer', SimpleImputer(strategy='most_frequent')),<br /> ('encoder',<br /> OneHotEncoder(drop='first',<br /> handle_unknown='infrequent_if_exist',<br /> sparse_output=False))]) |
93
+ | preprocessor__feature_creation_pipeline | Pipeline(steps=[('feature_creation',<br /> FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>)),<br /> ('imputer', SimpleImputer(strategy='most_frequent')),<br /> ('encoder',<br /> OneHotEncoder(drop='first',<br /> handle_unknown='infrequent_if_exist',<br /> sparse_output=False))]) |
94
+ | preprocessor__numerical_pipeline__memory | |
95
+ | preprocessor__numerical_pipeline__steps | [('log_transformations', FunctionTransformer(func=<ufunc 'log1p'>)), ('imputer', SimpleImputer(strategy='median')), ('scaler', RobustScaler())] |
96
+ | preprocessor__numerical_pipeline__verbose | False |
97
+ | preprocessor__numerical_pipeline__log_transformations | FunctionTransformer(func=<ufunc 'log1p'>) |
98
+ | preprocessor__numerical_pipeline__imputer | SimpleImputer(strategy='median') |
99
+ | preprocessor__numerical_pipeline__scaler | RobustScaler() |
100
+ | preprocessor__numerical_pipeline__log_transformations__accept_sparse | False |
101
+ | preprocessor__numerical_pipeline__log_transformations__check_inverse | True |
102
+ | preprocessor__numerical_pipeline__log_transformations__feature_names_out | |
103
+ | preprocessor__numerical_pipeline__log_transformations__func | <ufunc 'log1p'> |
104
+ | preprocessor__numerical_pipeline__log_transformations__inv_kw_args | |
105
+ | preprocessor__numerical_pipeline__log_transformations__inverse_func | |
106
+ | preprocessor__numerical_pipeline__log_transformations__kw_args | |
107
+ | preprocessor__numerical_pipeline__log_transformations__validate | False |
108
+ | preprocessor__numerical_pipeline__imputer__add_indicator | False |
109
+ | preprocessor__numerical_pipeline__imputer__copy | True |
110
+ | preprocessor__numerical_pipeline__imputer__fill_value | |
111
+ | preprocessor__numerical_pipeline__imputer__keep_empty_features | False |
112
+ | preprocessor__numerical_pipeline__imputer__missing_values | nan |
113
+ | preprocessor__numerical_pipeline__imputer__strategy | median |
114
+ | preprocessor__numerical_pipeline__scaler__copy | True |
115
+ | preprocessor__numerical_pipeline__scaler__quantile_range | (25.0, 75.0) |
116
+ | preprocessor__numerical_pipeline__scaler__unit_variance | False |
117
+ | preprocessor__numerical_pipeline__scaler__with_centering | True |
118
+ | preprocessor__numerical_pipeline__scaler__with_scaling | True |
119
+ | preprocessor__categorical_pipeline__memory | |
120
+ | preprocessor__categorical_pipeline__steps | [('as_categorical', FunctionTransformer(func=<function as_category at 0x000001E7F1450680>)), ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist',<br /> sparse_output=False))] |
121
+ | preprocessor__categorical_pipeline__verbose | False |
122
+ | preprocessor__categorical_pipeline__as_categorical | FunctionTransformer(func=<function as_category at 0x000001E7F1450680>) |
123
+ | preprocessor__categorical_pipeline__imputer | SimpleImputer(strategy='most_frequent') |
124
+ | preprocessor__categorical_pipeline__encoder | OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist',<br /> sparse_output=False) |
125
+ | preprocessor__categorical_pipeline__as_categorical__accept_sparse | False |
126
+ | preprocessor__categorical_pipeline__as_categorical__check_inverse | True |
127
+ | preprocessor__categorical_pipeline__as_categorical__feature_names_out | |
128
+ | preprocessor__categorical_pipeline__as_categorical__func | <function as_category at 0x000001E7F1450680> |
129
+ | preprocessor__categorical_pipeline__as_categorical__inv_kw_args | |
130
+ | preprocessor__categorical_pipeline__as_categorical__inverse_func | |
131
+ | preprocessor__categorical_pipeline__as_categorical__kw_args | |
132
+ | preprocessor__categorical_pipeline__as_categorical__validate | False |
133
+ | preprocessor__categorical_pipeline__imputer__add_indicator | False |
134
+ | preprocessor__categorical_pipeline__imputer__copy | True |
135
+ | preprocessor__categorical_pipeline__imputer__fill_value | |
136
+ | preprocessor__categorical_pipeline__imputer__keep_empty_features | False |
137
+ | preprocessor__categorical_pipeline__imputer__missing_values | nan |
138
+ | preprocessor__categorical_pipeline__imputer__strategy | most_frequent |
139
+ | preprocessor__categorical_pipeline__encoder__categories | auto |
140
+ | preprocessor__categorical_pipeline__encoder__drop | first |
141
+ | preprocessor__categorical_pipeline__encoder__dtype | <class 'numpy.float64'> |
142
+ | preprocessor__categorical_pipeline__encoder__feature_name_combiner | concat |
143
+ | preprocessor__categorical_pipeline__encoder__handle_unknown | infrequent_if_exist |
144
+ | preprocessor__categorical_pipeline__encoder__max_categories | |
145
+ | preprocessor__categorical_pipeline__encoder__min_frequency | |
146
+ | preprocessor__categorical_pipeline__encoder__sparse_output | False |
147
+ | preprocessor__feature_creation_pipeline__memory | |
148
+ | preprocessor__feature_creation_pipeline__steps | [('feature_creation', FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>)), ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist',<br /> sparse_output=False))] |
149
+ | preprocessor__feature_creation_pipeline__verbose | False |
150
+ | preprocessor__feature_creation_pipeline__feature_creation | FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>) |
151
+ | preprocessor__feature_creation_pipeline__imputer | SimpleImputer(strategy='most_frequent') |
152
+ | preprocessor__feature_creation_pipeline__encoder | OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist',<br /> sparse_output=False) |
153
+ | preprocessor__feature_creation_pipeline__feature_creation__accept_sparse | False |
154
+ | preprocessor__feature_creation_pipeline__feature_creation__check_inverse | True |
155
+ | preprocessor__feature_creation_pipeline__feature_creation__feature_names_out | |
156
+ | preprocessor__feature_creation_pipeline__feature_creation__func | <function feature_creation at 0x000001E7F14514E0> |
157
+ | preprocessor__feature_creation_pipeline__feature_creation__inv_kw_args | |
158
+ | preprocessor__feature_creation_pipeline__feature_creation__inverse_func | |
159
+ | preprocessor__feature_creation_pipeline__feature_creation__kw_args | |
160
+ | preprocessor__feature_creation_pipeline__feature_creation__validate | False |
161
+ | preprocessor__feature_creation_pipeline__imputer__add_indicator | False |
162
+ | preprocessor__feature_creation_pipeline__imputer__copy | True |
163
+ | preprocessor__feature_creation_pipeline__imputer__fill_value | |
164
+ | preprocessor__feature_creation_pipeline__imputer__keep_empty_features | False |
165
+ | preprocessor__feature_creation_pipeline__imputer__missing_values | nan |
166
+ | preprocessor__feature_creation_pipeline__imputer__strategy | most_frequent |
167
+ | preprocessor__feature_creation_pipeline__encoder__categories | auto |
168
+ | preprocessor__feature_creation_pipeline__encoder__drop | first |
169
+ | preprocessor__feature_creation_pipeline__encoder__dtype | <class 'numpy.float64'> |
170
+ | preprocessor__feature_creation_pipeline__encoder__feature_name_combiner | concat |
171
+ | preprocessor__feature_creation_pipeline__encoder__handle_unknown | infrequent_if_exist |
172
+ | preprocessor__feature_creation_pipeline__encoder__max_categories | |
173
+ | preprocessor__feature_creation_pipeline__encoder__min_frequency | |
174
+ | preprocessor__feature_creation_pipeline__encoder__sparse_output | False |
175
+ | feature-selection__k | all |
176
+ | feature-selection__score_func | <function mutual_info_classif at 0x000001E7EDA4E480> |
177
+ | classifier__bootstrap | True |
178
+ | classifier__ccp_alpha | 0.0 |
179
+ | classifier__class_weight | |
180
+ | classifier__criterion | gini |
181
+ | classifier__max_depth | |
182
+ | classifier__max_features | sqrt |
183
+ | classifier__max_leaf_nodes | |
184
+ | classifier__max_samples | |
185
+ | classifier__min_impurity_decrease | 0.0 |
186
+ | classifier__min_samples_leaf | 1 |
187
+ | classifier__min_samples_split | 2 |
188
+ | classifier__min_weight_fraction_leaf | 0.0 |
189
+ | classifier__monotonic_cst | |
190
+ | classifier__n_estimators | 100 |
191
+ | classifier__n_jobs | -1 |
192
+ | classifier__oob_score | False |
193
+ | classifier__random_state | 2024 |
194
+ | classifier__verbose | 0 |
195
+ | classifier__warm_start | False |
196
+
197
+ </details>
198
+
199
+ ### Model Plot
200
+
201
+ <style>#sk-container-id-13 {/* Definition of color scheme common for light and dark mode */--sklearn-color-text: black;--sklearn-color-line: gray;/* Definition of color scheme for unfitted estimators */--sklearn-color-unfitted-level-0: #fff5e6;--sklearn-color-unfitted-level-1: #f6e4d2;--sklearn-color-unfitted-level-2: #ffe0b3;--sklearn-color-unfitted-level-3: chocolate;/* Definition of color scheme for fitted estimators */--sklearn-color-fitted-level-0: #f0f8ff;--sklearn-color-fitted-level-1: #d4ebff;--sklearn-color-fitted-level-2: #b3dbfd;--sklearn-color-fitted-level-3: cornflowerblue;/* Specific color for light theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-icon: #696969;@media (prefers-color-scheme: dark) {/* Redefinition of color scheme for dark theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-icon: #878787;}
202
+ }#sk-container-id-13 {color: var(--sklearn-color-text);
203
+ }#sk-container-id-13 pre {padding: 0;
204
+ }#sk-container-id-13 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;
205
+ }#sk-container-id-13 div.sk-dashed-wrapped {border: 1px dashed var(--sklearn-color-line);margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: var(--sklearn-color-background);
206
+ }#sk-container-id-13 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }`but bootstrap.min.css set `[hidden] { display: none !important; }`so we also need the `!important` here to be able to override thedefault hidden behavior on the sphinx rendered scikit-learn.org.See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;
207
+ }#sk-container-id-13 div.sk-text-repr-fallback {display: none;
208
+ }div.sk-parallel-item,
209
+ div.sk-serial,
210
+ div.sk-item {/* draw centered vertical line to link estimators */background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));background-size: 2px 100%;background-repeat: no-repeat;background-position: center center;
211
+ }/* Parallel-specific style estimator block */#sk-container-id-13 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 2px solid var(--sklearn-color-text-on-default-background);flex-grow: 1;
212
+ }#sk-container-id-13 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: var(--sklearn-color-background);position: relative;
213
+ }#sk-container-id-13 div.sk-parallel-item {display: flex;flex-direction: column;
214
+ }#sk-container-id-13 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;
215
+ }#sk-container-id-13 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;
216
+ }#sk-container-id-13 div.sk-parallel-item:only-child::after {width: 0;
217
+ }/* Serial-specific style estimator block */#sk-container-id-13 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: var(--sklearn-color-background);padding-right: 1em;padding-left: 1em;
218
+ }/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
219
+ clickable and can be expanded/collapsed.
220
+ - Pipeline and ColumnTransformer use this feature and define the default style
221
+ - Estimators will overwrite some part of the style using the `sk-estimator` class
222
+ *//* Pipeline and ColumnTransformer style (default) */#sk-container-id-13 div.sk-toggleable {/* Default theme specific background. It is overwritten whether we have aspecific estimator or a Pipeline/ColumnTransformer */background-color: var(--sklearn-color-background);
223
+ }/* Toggleable label */
224
+ #sk-container-id-13 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.5em;box-sizing: border-box;text-align: center;
225
+ }#sk-container-id-13 label.sk-toggleable__label-arrow:before {/* Arrow on the left of the label */content: "▸";float: left;margin-right: 0.25em;color: var(--sklearn-color-icon);
226
+ }#sk-container-id-13 label.sk-toggleable__label-arrow:hover:before {color: var(--sklearn-color-text);
227
+ }/* Toggleable content - dropdown */#sk-container-id-13 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
228
+ }#sk-container-id-13 div.sk-toggleable__content.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
229
+ }#sk-container-id-13 div.sk-toggleable__content pre {margin: 0.2em;border-radius: 0.25em;color: var(--sklearn-color-text);/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
230
+ }#sk-container-id-13 div.sk-toggleable__content.fitted pre {/* unfitted */background-color: var(--sklearn-color-fitted-level-0);
231
+ }#sk-container-id-13 input.sk-toggleable__control:checked~div.sk-toggleable__content {/* Expand drop-down */max-height: 200px;max-width: 100%;overflow: auto;
232
+ }#sk-container-id-13 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";
233
+ }/* Pipeline/ColumnTransformer-specific style */#sk-container-id-13 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
234
+ }#sk-container-id-13 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: var(--sklearn-color-fitted-level-2);
235
+ }/* Estimator-specific style *//* Colorize estimator box */
236
+ #sk-container-id-13 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
237
+ }#sk-container-id-13 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
238
+ }#sk-container-id-13 div.sk-label label.sk-toggleable__label,
239
+ #sk-container-id-13 div.sk-label label {/* The background is the default theme color */color: var(--sklearn-color-text-on-default-background);
240
+ }/* On hover, darken the color of the background */
241
+ #sk-container-id-13 div.sk-label:hover label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
242
+ }/* Label box, darken color on hover, fitted */
243
+ #sk-container-id-13 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {color: var(--sklearn-color-text);background-color: var(--sklearn-color-fitted-level-2);
244
+ }/* Estimator label */#sk-container-id-13 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;
245
+ }#sk-container-id-13 div.sk-label-container {text-align: center;
246
+ }/* Estimator-specific */
247
+ #sk-container-id-13 div.sk-estimator {font-family: monospace;border: 1px dotted var(--sklearn-color-border-box);border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
248
+ }#sk-container-id-13 div.sk-estimator.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
249
+ }/* on hover */
250
+ #sk-container-id-13 div.sk-estimator:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
251
+ }#sk-container-id-13 div.sk-estimator.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
252
+ }/* Specification for estimator info (e.g. "i" and "?") *//* Common style for "i" and "?" */.sk-estimator-doc-link,
253
+ a:link.sk-estimator-doc-link,
254
+ a:visited.sk-estimator-doc-link {float: right;font-size: smaller;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1em;height: 1em;width: 1em;text-decoration: none !important;margin-left: 1ex;/* unfitted */border: var(--sklearn-color-unfitted-level-1) 1pt solid;color: var(--sklearn-color-unfitted-level-1);
255
+ }.sk-estimator-doc-link.fitted,
256
+ a:link.sk-estimator-doc-link.fitted,
257
+ a:visited.sk-estimator-doc-link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
258
+ }/* On hover */
259
+ div.sk-estimator:hover .sk-estimator-doc-link:hover,
260
+ .sk-estimator-doc-link:hover,
261
+ div.sk-label-container:hover .sk-estimator-doc-link:hover,
262
+ .sk-estimator-doc-link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
263
+ }div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
264
+ .sk-estimator-doc-link.fitted:hover,
265
+ div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
266
+ .sk-estimator-doc-link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
267
+ }/* Span, style for the box shown on hovering the info icon */
268
+ .sk-estimator-doc-link span {display: none;z-index: 9999;position: relative;font-weight: normal;right: .2ex;padding: .5ex;margin: .5ex;width: min-content;min-width: 20ex;max-width: 50ex;color: var(--sklearn-color-text);box-shadow: 2pt 2pt 4pt #999;/* unfitted */background: var(--sklearn-color-unfitted-level-0);border: .5pt solid var(--sklearn-color-unfitted-level-3);
269
+ }.sk-estimator-doc-link.fitted span {/* fitted */background: var(--sklearn-color-fitted-level-0);border: var(--sklearn-color-fitted-level-3);
270
+ }.sk-estimator-doc-link:hover span {display: block;
271
+ }/* "?"-specific style due to the `<a>` HTML tag */#sk-container-id-13 a.estimator_doc_link {float: right;font-size: 1rem;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1rem;height: 1rem;width: 1rem;text-decoration: none;/* unfitted */color: var(--sklearn-color-unfitted-level-1);border: var(--sklearn-color-unfitted-level-1) 1pt solid;
272
+ }#sk-container-id-13 a.estimator_doc_link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
273
+ }/* On hover */
274
+ #sk-container-id-13 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
275
+ }#sk-container-id-13 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
276
+ }
277
+ </style><div id="sk-container-id-13" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;preprocessor&#x27;,ColumnTransformer(transformers=[(&#x27;numerical_pipeline&#x27;,Pipeline(steps=[(&#x27;log_transformations&#x27;,FunctionTransformer(func=&lt;ufunc &#x27;log1p&#x27;&gt;)),(&#x27;imputer&#x27;,SimpleImputer(strategy=&#x27;median&#x27;)),(&#x27;scaler&#x27;,RobustScaler())]),[&#x27;prg&#x27;, &#x27;pl&#x27;, &#x27;pr&#x27;, &#x27;sk&#x27;,&#x27;ts&#x27;, &#x27;m11&#x27;, &#x27;bd2&#x27;, &#x27;age&#x27;]),(&#x27;categorical_pipeline&#x27;,Pipeline(steps=[(&#x27;as_categorical&#x27;,Funct...FunctionTransformer(func=&lt;function feature_creation at 0x000001E7F14514E0&gt;)),(&#x27;imputer&#x27;,SimpleImputer(strategy=&#x27;most_frequent&#x27;)),(&#x27;encoder&#x27;,OneHotEncoder(drop=&#x27;first&#x27;,handle_unknown=&#x27;infrequent_if_exist&#x27;,sparse_output=False))]),[&#x27;age&#x27;])])),(&#x27;feature-selection&#x27;,SelectKBest(k=&#x27;all&#x27;,score_func=&lt;function mutual_info_classif at 0x000001E7EDA4E480&gt;)),(&#x27;classifier&#x27;,RandomForestClassifier(n_jobs=-1, random_state=2024))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-154" type="checkbox" ><label for="sk-estimator-id-154" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;&nbsp;Pipeline<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.pipeline.Pipeline.html">?<span>Documentation for Pipeline</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>Pipeline(steps=[(&#x27;preprocessor&#x27;,ColumnTransformer(transformers=[(&#x27;numerical_pipeline&#x27;,Pipeline(steps=[(&#x27;log_transformations&#x27;,FunctionTransformer(func=&lt;ufunc &#x27;log1p&#x27;&gt;)),(&#x27;imputer&#x27;,SimpleImputer(strategy=&#x27;median&#x27;)),(&#x27;scaler&#x27;,RobustScaler())]),[&#x27;prg&#x27;, &#x27;pl&#x27;, &#x27;pr&#x27;, &#x27;sk&#x27;,&#x27;ts&#x27;, &#x27;m11&#x27;, &#x27;bd2&#x27;, &#x27;age&#x27;]),(&#x27;categorical_pipeline&#x27;,Pipeline(steps=[(&#x27;as_categorical&#x27;,Funct...FunctionTransformer(func=&lt;function feature_creation at 0x000001E7F14514E0&gt;)),(&#x27;imputer&#x27;,SimpleImputer(strategy=&#x27;most_frequent&#x27;)),(&#x27;encoder&#x27;,OneHotEncoder(drop=&#x27;first&#x27;,handle_unknown=&#x27;infrequent_if_exist&#x27;,sparse_output=False))]),[&#x27;age&#x27;])])),(&#x27;feature-selection&#x27;,SelectKBest(k=&#x27;all&#x27;,score_func=&lt;function mutual_info_classif at 0x000001E7EDA4E480&gt;)),(&#x27;classifier&#x27;,RandomForestClassifier(n_jobs=-1, random_state=2024))])</pre></div> </div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-155" type="checkbox" ><label for="sk-estimator-id-155" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;preprocessor: ColumnTransformer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.compose.ColumnTransformer.html">?<span>Documentation for preprocessor: ColumnTransformer</span></a></label><div class="sk-toggleable__content fitted"><pre>ColumnTransformer(transformers=[(&#x27;numerical_pipeline&#x27;,Pipeline(steps=[(&#x27;log_transformations&#x27;,FunctionTransformer(func=&lt;ufunc &#x27;log1p&#x27;&gt;)),(&#x27;imputer&#x27;,SimpleImputer(strategy=&#x27;median&#x27;)),(&#x27;scaler&#x27;, RobustScaler())]),[&#x27;prg&#x27;, &#x27;pl&#x27;, &#x27;pr&#x27;, &#x27;sk&#x27;, &#x27;ts&#x27;, &#x27;m11&#x27;, &#x27;bd2&#x27;,&#x27;age&#x27;]),(&#x27;categorical_pipeline&#x27;,Pipeline(steps=[(&#x27;as_categorical&#x27;,FunctionTransformer(func=&lt;function as_...handle_unknown=&#x27;infrequent_if_exist&#x27;,sparse_output=False))]),[&#x27;insurance&#x27;]),(&#x27;feature_creation_pipeline&#x27;,Pipeline(steps=[(&#x27;feature_creation&#x27;,FunctionTransformer(func=&lt;function feature_creation at 0x000001E7F14514E0&gt;)),(&#x27;imputer&#x27;,SimpleImputer(strategy=&#x27;most_frequent&#x27;)),(&#x27;encoder&#x27;,OneHotEncoder(drop=&#x27;first&#x27;,handle_unknown=&#x27;infrequent_if_exist&#x27;,sparse_output=False))]),[&#x27;age&#x27;])])</pre></div> </div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-156" type="checkbox" ><label for="sk-estimator-id-156" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">numerical_pipeline</label><div class="sk-toggleable__content fitted"><pre>[&#x27;prg&#x27;, &#x27;pl&#x27;, &#x27;pr&#x27;, &#x27;sk&#x27;, &#x27;ts&#x27;, &#x27;m11&#x27;, &#x27;bd2&#x27;, &#x27;age&#x27;]</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-157" type="checkbox" ><label for="sk-estimator-id-157" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;FunctionTransformer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.FunctionTransformer.html">?<span>Documentation for FunctionTransformer</span></a></label><div class="sk-toggleable__content fitted"><pre>FunctionTransformer(func=&lt;ufunc &#x27;log1p&#x27;&gt;)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-158" type="checkbox" ><label for="sk-estimator-id-158" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;SimpleImputer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.impute.SimpleImputer.html">?<span>Documentation for SimpleImputer</span></a></label><div class="sk-toggleable__content fitted"><pre>SimpleImputer(strategy=&#x27;median&#x27;)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-159" type="checkbox" ><label for="sk-estimator-id-159" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;RobustScaler<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.RobustScaler.html">?<span>Documentation for RobustScaler</span></a></label><div class="sk-toggleable__content fitted"><pre>RobustScaler()</pre></div> </div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-160" type="checkbox" ><label for="sk-estimator-id-160" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">categorical_pipeline</label><div class="sk-toggleable__content fitted"><pre>[&#x27;insurance&#x27;]</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-161" type="checkbox" ><label for="sk-estimator-id-161" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;FunctionTransformer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.FunctionTransformer.html">?<span>Documentation for FunctionTransformer</span></a></label><div class="sk-toggleable__content fitted"><pre>FunctionTransformer(func=&lt;function as_category at 0x000001E7F1450680&gt;)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-162" type="checkbox" ><label for="sk-estimator-id-162" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;SimpleImputer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.impute.SimpleImputer.html">?<span>Documentation for SimpleImputer</span></a></label><div class="sk-toggleable__content fitted"><pre>SimpleImputer(strategy=&#x27;most_frequent&#x27;)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-163" type="checkbox" ><label for="sk-estimator-id-163" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;OneHotEncoder<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.OneHotEncoder.html">?<span>Documentation for OneHotEncoder</span></a></label><div class="sk-toggleable__content fitted"><pre>OneHotEncoder(drop=&#x27;first&#x27;, handle_unknown=&#x27;infrequent_if_exist&#x27;,sparse_output=False)</pre></div> </div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-164" type="checkbox" ><label for="sk-estimator-id-164" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">feature_creation_pipeline</label><div class="sk-toggleable__content fitted"><pre>[&#x27;age&#x27;]</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-165" type="checkbox" ><label for="sk-estimator-id-165" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;FunctionTransformer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.FunctionTransformer.html">?<span>Documentation for FunctionTransformer</span></a></label><div class="sk-toggleable__content fitted"><pre>FunctionTransformer(func=&lt;function feature_creation at 0x000001E7F14514E0&gt;)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-166" type="checkbox" ><label for="sk-estimator-id-166" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;SimpleImputer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.impute.SimpleImputer.html">?<span>Documentation for SimpleImputer</span></a></label><div class="sk-toggleable__content fitted"><pre>SimpleImputer(strategy=&#x27;most_frequent&#x27;)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-167" type="checkbox" ><label for="sk-estimator-id-167" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;OneHotEncoder<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.OneHotEncoder.html">?<span>Documentation for OneHotEncoder</span></a></label><div class="sk-toggleable__content fitted"><pre>OneHotEncoder(drop=&#x27;first&#x27;, handle_unknown=&#x27;infrequent_if_exist&#x27;,sparse_output=False)</pre></div> </div></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-168" type="checkbox" ><label for="sk-estimator-id-168" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;SelectKBest<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.feature_selection.SelectKBest.html">?<span>Documentation for SelectKBest</span></a></label><div class="sk-toggleable__content fitted"><pre>SelectKBest(k=&#x27;all&#x27;,score_func=&lt;function mutual_info_classif at 0x000001E7EDA4E480&gt;)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-169" type="checkbox" ><label for="sk-estimator-id-169" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;RandomForestClassifier<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.ensemble.RandomForestClassifier.html">?<span>Documentation for RandomForestClassifier</span></a></label><div class="sk-toggleable__content fitted"><pre>RandomForestClassifier(n_jobs=-1, random_state=2024)</pre></div> </div></div></div></div></div></div>
278
+
279
+ ## Evaluation Results
280
+
281
+ [More Information Needed]
282
+
283
+ # How to Get Started with the Model
284
+
285
+ [More Information Needed]
286
+
287
+ # Model Card Authors
288
+
289
+ This model card is written by following authors:
290
+
291
+ [More Information Needed]
292
+
293
+ # Model Card Contact
294
+
295
+ You can contact the model card authors through following channels:
296
+ [More Information Needed]
297
+
298
+ # Citation
299
+
300
+ Below you can find information related to citation.
301
+
302
+ **BibTeX:**
303
+ ```
304
+ [More Information Needed]
305
+ ```
306
+
307
+ # citation_bibtex
308
+
309
+ bibtex
310
+ @inproceedings{...,year={2024}}
311
+
312
+ # get_started_code
313
+
314
+ import joblib
315
+ clf = joblib.load(../models/RandomForestClassifier.joblib)
316
+
317
+ # model_card_authors
318
+
319
+ Gabriel Okundaye
320
+
321
+ # limitations
322
+
323
+ This model needs further feature engineering to improve the f1 weighted score. Collaborate on with me here [GitHub](https://github.com/D0nG4667/sepsis_prediction_full_stack)
324
+
325
+ # model_description
326
+
327
+ This is a RandomForestClassifier model trained on Sepsis dataset from this [kaggle dataset](https://www.kaggle.com/datasets/chaunguynnghunh/sepsis/data).
328
+
329
+ # roc_auc_curve
330
+
331
+ ![roc_auc_curve](../models/huggingface/RandomForestClassifierROC_AUC_Curve_for_RandomForestClassifier_and_XGBClassifier_(F1-Weighted_Scores__0.778_and_0.777_respectively).webp)
332
+
333
+ # feature_importances
334
+
335
+ ![feature_importances](../models/huggingface/RandomForestClassifierFeature_Importances-_RandomForestClassifier_(F1-Weighted_Scores__0.778).webp)
RandomForestClassifier.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74f7caaed8b8e54a554d5f73f8a0687bde553512541f78fd45cec04b5602e22b
3
+ size 1320184
config.json ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "columns": [
4
+ "id",
5
+ "prg",
6
+ "pl",
7
+ "pr",
8
+ "sk",
9
+ "ts",
10
+ "m11",
11
+ "bd2",
12
+ "age",
13
+ "insurance",
14
+ "sepsis"
15
+ ],
16
+ "environment": [
17
+ "scikit-learn=1.5.0",
18
+ "imbalanced-learn=0.12.3"
19
+ ],
20
+ "example_input": {
21
+ "age": [
22
+ 50,
23
+ 31,
24
+ 32
25
+ ],
26
+ "bd2": [
27
+ 0.627,
28
+ 0.351,
29
+ 0.672
30
+ ],
31
+ "id": [
32
+ "ICU200010",
33
+ "ICU200011",
34
+ "ICU200012"
35
+ ],
36
+ "insurance": [
37
+ 0,
38
+ 0,
39
+ 1
40
+ ],
41
+ "m11": [
42
+ 33.6,
43
+ 26.6,
44
+ 23.3
45
+ ],
46
+ "pl": [
47
+ 148,
48
+ 85,
49
+ 183
50
+ ],
51
+ "pr": [
52
+ 72,
53
+ 66,
54
+ 64
55
+ ],
56
+ "prg": [
57
+ 6,
58
+ 1,
59
+ 8
60
+ ],
61
+ "sepsis": [
62
+ "Positive",
63
+ "Negative",
64
+ "Positive"
65
+ ],
66
+ "sk": [
67
+ 35,
68
+ 29,
69
+ 0
70
+ ],
71
+ "ts": [
72
+ 0,
73
+ 0,
74
+ 0
75
+ ]
76
+ },
77
+ "model": {
78
+ "file": "RandomForestClassifier.joblib"
79
+ },
80
+ "model_format": "pickle",
81
+ "task": "tabular-classification"
82
+ }
83
+ }