File size: 20,857 Bytes
fd4b932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Calculate mIOU for Deeplabv3p model on validation dataset
"""
import os, argparse, time
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import copy
import itertools
from tqdm import tqdm
from collections import OrderedDict
import operator
from labelme.utils import lblsave as label_save

from tensorflow.keras.models import load_model
import tensorflow.keras.backend as K
import tensorflow as tf
import MNN
import onnxruntime

from common.utils import get_data_list, get_classes, get_custom_objects, optimize_tf_gpu, visualize_segmentation
from deeplabv3p.data import SegmentationGenerator
from deeplabv3p.metrics import mIOU
from deeplabv3p.postprocess_np import crf_postprocess

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

optimize_tf_gpu(tf, K)


def deeplab_predict_keras(model, image_data):
    prediction = model.predict(image_data)
    prediction = np.argmax(prediction, axis=-1)
    return prediction[0]


def deeplab_predict_onnx(model, image_data):
    input_tensors = []
    for i, input_tensor in enumerate(model.get_inputs()):
        input_tensors.append(input_tensor)
    # assume only 1 input tensor for image
    assert len(input_tensors) == 1, 'invalid input tensor number.'

    feed = {input_tensors[0].name: image_data}
    prediction = model.run(None, feed)

    prediction = np.argmax(prediction, axis=-1)
    return prediction[0]


def deeplab_predict_pb(model, image_data):
    # NOTE: TF 1.x frozen pb graph need to specify input/output tensor name
    # so we need to hardcode the input/output tensor names here to get them from model
    output_tensor_name = 'graph/pred_mask/Softmax:0'

    # assume only 1 input tensor for image
    input_tensor_name = 'graph/image_input:0'

    # get input/output tensors
    image_input = model.get_tensor_by_name(input_tensor_name)
    output_tensor = model.get_tensor_by_name(output_tensor_name)

    with tf.Session(graph=model) as sess:
        prediction = sess.run(output_tensor, feed_dict={
            image_input: image_data
        })
    prediction = np.argmax(prediction, axis=-1)
    return prediction[0]


def deeplab_predict_tflite(interpreter, image_data):
    input_details = interpreter.get_input_details()
    output_details = interpreter.get_output_details()

    interpreter.set_tensor(input_details[0]['index'], image_data)
    interpreter.invoke()

    prediction = []
    for output_detail in output_details:
        output_data = interpreter.get_tensor(output_detail['index'])
        prediction.append(output_data)

    prediction = np.argmax(prediction[0], axis=-1)
    return prediction[0]


def deeplab_predict_mnn(interpreter, session, image_data):
    from functools import reduce
    from operator import mul

    # assume only 1 input tensor for image
    input_tensor = interpreter.getSessionInput(session)
    # get input shape
    input_shape = input_tensor.getShape()

    # use a temp tensor to copy data
    # TODO: currently MNN python binding have mem leak when creating MNN.Tensor
    # from numpy array, only from tuple is good. So we convert input image to tuple
    input_elementsize = reduce(mul, input_shape)
    tmp_input = MNN.Tensor(input_shape, input_tensor.getDataType(),\
                    tuple(image_data.reshape(input_elementsize, -1)), input_tensor.getDimensionType())

    input_tensor.copyFrom(tmp_input)
    interpreter.runSession(session)

    prediction = []
    # we only handle single output model
    output_tensor = interpreter.getSessionOutput(session)
    output_shape = output_tensor.getShape()

    assert output_tensor.getDataType() == MNN.Halide_Type_Float

    # copy output tensor to host, for further postprocess
    output_elementsize = reduce(mul, output_shape)
    tmp_output = MNN.Tensor(output_shape, output_tensor.getDataType(),\
                tuple(np.zeros(output_shape, dtype=float).reshape(output_elementsize, -1)), output_tensor.getDimensionType())

    output_tensor.copyToHostTensor(tmp_output)
    #tmp_output.printTensorData()

    output_data = np.array(tmp_output.getData(), dtype=float).reshape(output_shape)
    # our postprocess code based on TF channel last format, so if the output format
    # doesn't match, we need to transpose
    if output_tensor.getDimensionType() == MNN.Tensor_DimensionType_Caffe:
        output_data = output_data.transpose((0,2,3,1))
    elif output_tensor.getDimensionType() == MNN.Tensor_DimensionType_Caffe_C4:
        raise ValueError('unsupported output tensor dimension type')

    prediction.append(output_data)
    prediction = np.argmax(prediction[0], axis=-1)
    return prediction[0]


def plot_confusion_matrix(cm, classes, mIOU, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues):
    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
    trained_classes = classes
    plt.figure()
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title,fontsize=11)
    tick_marks = np.arange(len(classes))
    plt.xticks(np.arange(len(trained_classes)), classes, rotation=90,fontsize=9)
    plt.yticks(tick_marks, classes,fontsize=9)
    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, np.round(cm[i, j],2), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black", fontsize=7)
    plt.tight_layout()
    plt.ylabel('True label',fontsize=9)
    plt.xlabel('Predicted label',fontsize=9)

    plt.title('Mean IOU: '+ str(np.round(mIOU*100, 2)))
    output_path = os.path.join('result','confusion_matrix.png')
    os.makedirs('result', exist_ok=True)
    plt.savefig(output_path)
    #plt.show()
    return


def adjust_axes(r, t, fig, axes):
    """
     Plot - adjust axes
    """
    # get text width for re-scaling
    bb = t.get_window_extent(renderer=r)
    text_width_inches = bb.width / fig.dpi
    # get axis width in inches
    current_fig_width = fig.get_figwidth()
    new_fig_width = current_fig_width + text_width_inches
    propotion = new_fig_width / current_fig_width
    # get axis limit
    x_lim = axes.get_xlim()
    axes.set_xlim([x_lim[0], x_lim[1]*propotion])


def draw_plot_func(dictionary, n_classes, window_title, plot_title, x_label, output_path, to_show, plot_color, true_p_bar):
    """
     Draw plot using Matplotlib
    """
    # sort the dictionary by decreasing value, into a list of tuples
    sorted_dic_by_value = sorted(dictionary.items(), key=operator.itemgetter(1))
    # unpacking the list of tuples into two lists
    sorted_keys, sorted_values = zip(*sorted_dic_by_value)
    #
    if true_p_bar != "":
        """
         Special case to draw in (green=true predictions) & (red=false predictions)
        """
        fp_sorted = []
        tp_sorted = []
        for key in sorted_keys:
            fp_sorted.append(dictionary[key] - true_p_bar[key])
            tp_sorted.append(true_p_bar[key])
        plt.barh(range(n_classes), fp_sorted, align='center', color='crimson', label='False Predictions')
        plt.barh(range(n_classes), tp_sorted, align='center', color='forestgreen', label='True Predictions', left=fp_sorted)
        # add legend
        plt.legend(loc='lower right')
        """
         Write number on side of bar
        """
        fig = plt.gcf() # gcf - get current figure
        axes = plt.gca()
        r = fig.canvas.get_renderer()
        for i, val in enumerate(sorted_values):
            fp_val = fp_sorted[i]
            tp_val = tp_sorted[i]
            fp_str_val = " " + str(fp_val)
            tp_str_val = fp_str_val + " " + str(tp_val)
            # trick to paint multicolor with offset:
            #   first paint everything and then repaint the first number
            t = plt.text(val, i, tp_str_val, color='forestgreen', va='center', fontweight='bold')
            plt.text(val, i, fp_str_val, color='crimson', va='center', fontweight='bold')
            if i == (len(sorted_values)-1): # largest bar
                adjust_axes(r, t, fig, axes)
    else:
      plt.barh(range(n_classes), sorted_values, color=plot_color)
      """
       Write number on side of bar
      """
      fig = plt.gcf() # gcf - get current figure
      axes = plt.gca()
      r = fig.canvas.get_renderer()
      for i, val in enumerate(sorted_values):
          str_val = " " + str(val) # add a space before
          if val < 1.0:
              str_val = " {0:.2f}".format(val)
          t = plt.text(val, i, str_val, color=plot_color, va='center', fontweight='bold')
          # re-set axes to show number inside the figure
          if i == (len(sorted_values)-1): # largest bar
              adjust_axes(r, t, fig, axes)
    # set window title
    fig.canvas.set_window_title(window_title)
    # write classes in y axis
    tick_font_size = 12
    plt.yticks(range(n_classes), sorted_keys, fontsize=tick_font_size)
    """
     Re-scale height accordingly
    """
    init_height = fig.get_figheight()
    # comput the matrix height in points and inches
    dpi = fig.dpi
    height_pt = n_classes * (tick_font_size * 1.4) # 1.4 (some spacing)
    height_in = height_pt / dpi
    # compute the required figure height
    top_margin = 0.15    # in percentage of the figure height
    bottom_margin = 0.05 # in percentage of the figure height
    figure_height = height_in / (1 - top_margin - bottom_margin)
    # set new height
    if figure_height > init_height:
        fig.set_figheight(figure_height)

    # set plot title
    plt.title(plot_title, fontsize=14)
    # set axis titles
    # plt.xlabel('classes')
    plt.xlabel(x_label, fontsize='large')
    # adjust size of window
    fig.tight_layout()
    # save the plot
    fig.savefig(output_path)
    # show image
    if to_show:
        plt.show()
    # close the plot
    plt.close()


def plot_mIOU_result(IOUs, mIOU, num_classes):
    '''
     Draw mIOU plot (Show IOU's of all classes in decreasing order)
    '''
    window_title = "mIOU"
    plot_title = "mIOU: {0:.3f}%".format(mIOU*100)
    x_label = "Intersection Over Union"
    output_path = os.path.join('result','mIOU.png')
    os.makedirs('result', exist_ok=True)
    draw_plot_func(IOUs, num_classes, window_title, plot_title, x_label, output_path, to_show=False, plot_color='royalblue', true_p_bar='')


def save_seg_result(image, pred_mask, gt_mask, image_id, class_names):
    # save predict mask as PNG image
    mask_dir = os.path.join('result','predict_mask')
    os.makedirs(mask_dir, exist_ok=True)
    label_save(os.path.join(mask_dir, str(image_id)+'.png'), pred_mask)

    # visualize segmentation result
    title_str = 'Predict Segmentation\nmIOU: '+str(mIOU(pred_mask, gt_mask))
    gt_title_str = 'GT Segmentation'
    image_array = visualize_segmentation(image, pred_mask, gt_mask, class_names=class_names, title=title_str, gt_title=gt_title_str, ignore_count_threshold=1)

    # save result as JPG
    result_dir = os.path.join('result','segmentation')
    os.makedirs(result_dir, exist_ok=True)
    result_file = os.path.join(result_dir, str(image_id)+'.jpg')
    Image.fromarray(image_array).save(result_file)


def generate_matrix(gt_mask, pre_mask, num_classes):
    valid = (gt_mask >= 0) & (gt_mask < num_classes)
    label = num_classes * gt_mask[valid].astype('int') + pre_mask[valid]
    count = np.bincount(label, minlength=num_classes**2)
    confusion_matrix = count.reshape(num_classes, num_classes)
    return confusion_matrix


def eval_mIOU(model, model_format, dataset_path, dataset, class_names, model_input_shape, do_crf=False, save_result=False, show_background=False):
    num_classes = len(class_names)

    #prepare eval dataset generator
    eval_generator = SegmentationGenerator(dataset_path, dataset,
                                            1,  #batch_size
                                            num_classes,
                                            target_size=model_input_shape[::-1],
                                            weighted_type=None,
                                            is_eval=True,
                                            augment=False)

    if model_format == 'MNN':
        #MNN inference engine need create session
        session = model.createSession()

    # confusion matrix for all classes
    confusion_matrix = np.zeros((num_classes, num_classes), dtype=float)

    # get model prediction result
    pbar = tqdm(total=len(eval_generator), desc='Eval model')
    for n, (image_data, y_true) in enumerate(eval_generator):

        # support of tflite model
        if model_format == 'TFLITE':
            y_pred = deeplab_predict_tflite(model, image_data)
        # support of MNN model
        elif model_format == 'MNN':
            y_pred =deeplab_predict_mnn(model, session, image_data)
        # support of TF 1.x frozen pb model
        elif model_format == 'PB':
            y_pred = deeplab_predict_pb(model, image_data)
        # support of ONNX model
        elif model_format == 'ONNX':
            y_pred = deeplab_predict_onnx(model, image_data)
        # normal keras h5 model
        elif model_format == 'H5':
            y_pred = deeplab_predict_keras(model, image_data)
        else:
            raise ValueError('invalid model format')

        image = image_data[0].astype('uint8')
        pred_mask = y_pred.reshape(model_input_shape)
        gt_mask = y_true.reshape(model_input_shape).astype('int')

        # add CRF postprocess
        if do_crf:
            pred_mask = crf_postprocess(image, pred_mask, zero_unsure=False)

        # save segmentation result image
        if save_result:
            # get eval image name to save corresponding result
            image_list = eval_generator.get_batch_image_path(n)
            assert len(image_list) == 1, 'incorrect image batch'
            image_id = os.path.splitext(os.path.basename(image_list[0]))[0]

            save_seg_result(image, pred_mask, gt_mask, image_id, class_names)

        # update confusion matrix
        pred_mask = pred_mask.astype('int')
        gt_mask = gt_mask.astype('int')
        confusion_matrix += generate_matrix(gt_mask, pred_mask, num_classes)

        # compare prediction result with label
        # to update confusion matrix
        #flat_pred = np.ravel(pred_mask).astype('int')
        #flat_label = np.ravel(gt_mask).astype('int')
        #for p, l in zip(flat_pred, flat_label):
            #if l == num_classes or l == 255:
                #continue
            #if l < num_classes and p < num_classes:
                #confusion_matrix[l, p] += 1
            #else:
                #print('Invalid entry encountered, skipping! Label: ', l,
                        #' Prediction: ', p)

        pbar.update(1)
    pbar.close()

    # calculate Pixel accuracy
    PixelAcc = np.diag(confusion_matrix).sum() / confusion_matrix.sum()

    # calculate Class accuracy
    ClassAcc = np.diag(confusion_matrix) / confusion_matrix.sum(axis=1)
    mClassAcc = np.nanmean(ClassAcc)

    # calculate mIoU
    I = np.diag(confusion_matrix)
    U = np.sum(confusion_matrix, axis=0) + np.sum(confusion_matrix, axis=1) - I
    IoU = I/U
    #mIoU = np.nanmean(IoU)

    # calculate FW (Frequency Weighted) IoU
    Freq = np.sum(confusion_matrix, axis=1) / np.sum(confusion_matrix)
    FWIoU = (Freq[Freq > 0] * IoU[Freq > 0]).sum()

    # calculate Dice Coefficient
    DiceCoef = 2*I / (U+I)

    # collect IOU/ClassAcc/Dice/Freq for every class
    IOUs, CLASS_ACCs, DICEs, FREQs = {}, {}, {}, {}
    for i,(class_name, iou, class_acc, dice, freq) in enumerate(zip(class_names, IoU, ClassAcc, DiceCoef, Freq)):
        IOUs[class_name] = iou
        CLASS_ACCs[class_name] = class_acc
        DICEs[class_name] = dice
        FREQs[class_name] = freq

    if not show_background:
        #get ride of background class info
        display_class_names = copy.deepcopy(class_names)
        display_class_names.remove('background')
        display_confusion_matrix = copy.deepcopy(confusion_matrix[1:, 1:])
        IOUs.pop('background')
        num_classes = num_classes - 1
    else:
        display_class_names = class_names
        display_confusion_matrix = confusion_matrix

    #sort IoU result by value, in descending order
    IOUs = OrderedDict(sorted(IOUs.items(), key=operator.itemgetter(1), reverse=True))

    #calculate mIOU from final IOU dict
    mIoU = np.nanmean(list(IOUs.values()))

    #show result
    print('\nevaluation summary')
    for class_name, iou in IOUs.items():
        print('%s: IoU %.4f, Freq %.4f, ClassAcc %.4f, Dice %.4f' % (class_name, iou, FREQs[class_name], CLASS_ACCs[class_name], DICEs[class_name]))
    print('mIoU=%.3f' % (mIoU*100))
    print('FWIoU=%.3f' % (FWIoU*100))
    print('PixelAcc=%.3f' % (PixelAcc*100))
    print('mClassAcc=%.3f' % (mClassAcc*100))


    # Plot mIOU & confusion matrix
    plot_mIOU_result(IOUs, mIoU, num_classes)
    plot_confusion_matrix(display_confusion_matrix, display_class_names, mIoU, normalize=True)

    return mIoU



#load TF 1.x frozen pb graph
def load_graph(model_path):
    # We parse the graph_def file
    with tf.gfile.GFile(model_path, "rb") as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())

    # We load the graph_def in the default graph
    with tf.Graph().as_default() as graph:
        tf.import_graph_def(
            graph_def,
            input_map=None,
            return_elements=None,
            name="graph",
            op_dict=None,
            producer_op_list=None
        )
    return graph


def load_eval_model(model_path):
    # support of tflite model
    if model_path.endswith('.tflite'):
        from tensorflow.lite.python import interpreter as interpreter_wrapper
        model = interpreter_wrapper.Interpreter(model_path=model_path)
        model.allocate_tensors()
        model_format = 'TFLITE'

    # support of MNN model
    elif model_path.endswith('.mnn'):
        model = MNN.Interpreter(model_path)
        model_format = 'MNN'

    # support of TF 1.x frozen pb model
    elif model_path.endswith('.pb'):
        model = load_graph(model_path)
        model_format = 'PB'

    # support of ONNX model
    elif model_path.endswith('.onnx'):
        model = onnxruntime.InferenceSession(model_path)
        model_format = 'ONNX'

    # normal keras h5 model
    elif model_path.endswith('.h5'):
        custom_object_dict = get_custom_objects()

        model = load_model(model_path, compile=False, custom_objects=custom_object_dict)
        model_format = 'H5'
        K.set_learning_phase(0)
    else:
        raise ValueError('invalid model file')

    return model, model_format


def main():
    parser = argparse.ArgumentParser(argument_default=argparse.SUPPRESS, description='evaluate Deeplab model (h5/pb/tflite/mnn) with test dataset')
    '''
    Command line options
    '''
    parser.add_argument(
        '--model_path', type=str, required=True,
        help='path to model file')

    parser.add_argument(
        '--dataset_path', type=str, required=True,
        help='dataset path containing images and label png file')

    parser.add_argument(
        '--dataset_file', type=str, required=True,
        help='eval samples txt file')

    parser.add_argument(
        '--classes_path', type=str, required=False, default='configs/voc_classes.txt',
        help='path to class definitions, default=%(default)s')

    parser.add_argument(
        '--model_input_shape', type=str,
        help='model image input size as <height>x<width>, default=%(default)s', default='512x512')

    parser.add_argument(
        '--do_crf', action="store_true",
        help='whether to add CRF postprocess for model output', default=False)

    parser.add_argument(
        '--show_background', default=False, action="store_true",
        help='Show background evaluation info')

    parser.add_argument(
        '--save_result', default=False, action="store_true",
        help='Save the segmentaion result image in result/segmentation dir')

    args = parser.parse_args()

    # param parse
    height, width = args.model_input_shape.split('x')
    model_input_shape = (int(height), int(width))

    # add background class to match model & GT
    class_names = get_classes(args.classes_path)
    assert len(class_names) < 254, 'PNG image label only support less than 254 classes.'
    class_names = ['background'] + class_names

    model, model_format = load_eval_model(args.model_path)

    # get dataset list
    dataset = get_data_list(args.dataset_file)

    start = time.time()
    eval_mIOU(model, model_format, args.dataset_path, dataset, class_names, model_input_shape, args.do_crf, args.save_result, args.show_background)
    end = time.time()
    print("Evaluation time cost: {:.6f}s".format(end - start))


if __name__ == '__main__':
    main()