mdeberta-semeval25_fold2
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 8.8698
- Precision Samples: 0.0554
- Recall Samples: 0.8389
- F1 Samples: 0.1008
- Precision Macro: 0.4439
- Recall Macro: 0.6615
- F1 Macro: 0.2256
- Precision Micro: 0.0556
- Recall Micro: 0.7909
- F1 Micro: 0.1039
- Precision Weighted: 0.1912
- Recall Weighted: 0.7909
- F1 Weighted: 0.1245
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10.355 | 1.0 | 19 | 9.8648 | 0.0379 | 0.7711 | 0.0705 | 0.4200 | 0.6387 | 0.1701 | 0.0380 | 0.7091 | 0.0722 | 0.2227 | 0.7091 | 0.0996 |
10.0045 | 2.0 | 38 | 9.5721 | 0.0451 | 0.7906 | 0.0828 | 0.5212 | 0.5917 | 0.1823 | 0.0449 | 0.7273 | 0.0846 | 0.2911 | 0.7273 | 0.1023 |
9.813 | 3.0 | 57 | 9.4463 | 0.0484 | 0.7777 | 0.0883 | 0.5628 | 0.5593 | 0.2119 | 0.0483 | 0.7030 | 0.0903 | 0.2908 | 0.7030 | 0.0978 |
9.5884 | 4.0 | 76 | 9.3384 | 0.0494 | 0.7926 | 0.0903 | 0.5984 | 0.5590 | 0.2262 | 0.0493 | 0.7121 | 0.0923 | 0.2977 | 0.7121 | 0.1030 |
9.2762 | 5.0 | 95 | 9.2320 | 0.0499 | 0.8026 | 0.0913 | 0.5663 | 0.5788 | 0.2291 | 0.0498 | 0.7303 | 0.0932 | 0.2718 | 0.7303 | 0.1066 |
9.4881 | 6.0 | 114 | 9.1234 | 0.0514 | 0.8262 | 0.0941 | 0.5370 | 0.6249 | 0.2242 | 0.0514 | 0.7667 | 0.0963 | 0.2608 | 0.7667 | 0.1131 |
9.2059 | 7.0 | 133 | 8.9948 | 0.0537 | 0.8278 | 0.0979 | 0.4847 | 0.6332 | 0.2181 | 0.0537 | 0.7758 | 0.1004 | 0.2199 | 0.7758 | 0.1200 |
9.0569 | 8.0 | 152 | 8.9326 | 0.0539 | 0.8293 | 0.0984 | 0.4849 | 0.6374 | 0.2192 | 0.0541 | 0.7758 | 0.1012 | 0.2228 | 0.7758 | 0.1208 |
9.332 | 9.0 | 171 | 8.8818 | 0.0545 | 0.8336 | 0.0993 | 0.4187 | 0.6420 | 0.2203 | 0.0548 | 0.7818 | 0.1024 | 0.1839 | 0.7818 | 0.1220 |
8.5028 | 10.0 | 190 | 8.8698 | 0.0554 | 0.8389 | 0.1008 | 0.4439 | 0.6615 | 0.2256 | 0.0556 | 0.7909 | 0.1039 | 0.1912 | 0.7909 | 0.1245 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.3.1
- Datasets 2.21.0
- Tokenizers 0.20.1
- Downloads last month
- 161
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for g-assismoraes/mdeberta-semeval25_fold2
Base model
microsoft/mdeberta-v3-base