File size: 16,677 Bytes
d038e92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
---

license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: hubert-classifier-aug-fold-2
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hubert-classifier-aug-fold-2

This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7004
- Accuracy: 0.8895
- Precision: 0.9016
- Recall: 0.8895
- F1: 0.8901
- Binary: 0.9228

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001

- train_batch_size: 32

- eval_batch_size: 32

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Binary |

|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|

| No log        | 0.13  | 50   | 3.8323          | 0.0877   | 0.0522    | 0.0877 | 0.0397 | 0.3479 |

| No log        | 0.27  | 100  | 3.2624          | 0.1808   | 0.1370    | 0.1808 | 0.1221 | 0.4188 |

| No log        | 0.4   | 150  | 2.8729          | 0.2955   | 0.2056    | 0.2955 | 0.2056 | 0.5031 |

| No log        | 0.54  | 200  | 2.3928          | 0.4157   | 0.3408    | 0.4157 | 0.3318 | 0.5904 |

| No log        | 0.67  | 250  | 2.0739          | 0.4548   | 0.4212    | 0.4548 | 0.3875 | 0.6186 |

| No log        | 0.81  | 300  | 1.7722          | 0.5547   | 0.5132    | 0.5547 | 0.4923 | 0.6887 |

| No log        | 0.94  | 350  | 1.5220          | 0.5951   | 0.5844    | 0.5951 | 0.5489 | 0.7157 |

| 2.8578        | 1.08  | 400  | 1.4062          | 0.6154   | 0.5903    | 0.6154 | 0.5690 | 0.7301 |

| 2.8578        | 1.21  | 450  | 1.1712          | 0.7126   | 0.7203    | 0.7126 | 0.6873 | 0.7978 |

| 2.8578        | 1.35  | 500  | 1.0957          | 0.6815   | 0.6716    | 0.6815 | 0.6441 | 0.7764 |

| 2.8578        | 1.48  | 550  | 1.0095          | 0.7395   | 0.7600    | 0.7395 | 0.7227 | 0.8165 |

| 2.8578        | 1.62  | 600  | 0.9283          | 0.7571   | 0.7774    | 0.7571 | 0.7454 | 0.8301 |

| 2.8578        | 1.75  | 650  | 0.9876          | 0.7544   | 0.7818    | 0.7544 | 0.7451 | 0.8270 |

| 2.8578        | 1.89  | 700  | 0.7728          | 0.8016   | 0.8095    | 0.8016 | 0.7934 | 0.8601 |

| 1.2835        | 2.02  | 750  | 0.8472          | 0.7827   | 0.7946    | 0.7827 | 0.7714 | 0.8457 |

| 1.2835        | 2.16  | 800  | 0.7331          | 0.7989   | 0.8183    | 0.7989 | 0.7962 | 0.8575 |

| 1.2835        | 2.29  | 850  | 0.8126          | 0.7814   | 0.7986    | 0.7814 | 0.7745 | 0.8441 |

| 1.2835        | 2.43  | 900  | 0.7898          | 0.7814   | 0.8120    | 0.7814 | 0.7749 | 0.8463 |

| 1.2835        | 2.56  | 950  | 0.7014          | 0.8111   | 0.8311    | 0.8111 | 0.8082 | 0.8671 |

| 1.2835        | 2.7   | 1000 | 0.6225          | 0.8300   | 0.8532    | 0.8300 | 0.8277 | 0.8808 |

| 1.2835        | 2.83  | 1050 | 0.7096          | 0.8178   | 0.8356    | 0.8178 | 0.8155 | 0.8715 |

| 1.2835        | 2.96  | 1100 | 0.6304          | 0.8232   | 0.8458    | 0.8232 | 0.8202 | 0.8773 |

| 0.8295        | 3.1   | 1150 | 0.5950          | 0.8435   | 0.8601    | 0.8435 | 0.8428 | 0.8907 |

| 0.8295        | 3.23  | 1200 | 0.6140          | 0.8421   | 0.8579    | 0.8421 | 0.8410 | 0.8892 |

| 0.8295        | 3.37  | 1250 | 0.6443          | 0.8327   | 0.8578    | 0.8327 | 0.8293 | 0.8826 |

| 0.8295        | 3.5   | 1300 | 0.6662          | 0.8205   | 0.8456    | 0.8205 | 0.8158 | 0.8737 |

| 0.8295        | 3.64  | 1350 | 0.6056          | 0.8502   | 0.8638    | 0.8502 | 0.8483 | 0.8949 |

| 0.8295        | 3.77  | 1400 | 0.5968          | 0.8448   | 0.8591    | 0.8448 | 0.8421 | 0.8907 |

| 0.8295        | 3.91  | 1450 | 0.5734          | 0.8354   | 0.8542    | 0.8354 | 0.8329 | 0.8845 |

| 0.6277        | 4.04  | 1500 | 0.6580          | 0.8340   | 0.8521    | 0.8340 | 0.8331 | 0.8830 |

| 0.6277        | 4.18  | 1550 | 0.6149          | 0.8529   | 0.8664    | 0.8529 | 0.8523 | 0.8981 |

| 0.6277        | 4.31  | 1600 | 0.5965          | 0.8556   | 0.8715    | 0.8556 | 0.8536 | 0.8978 |

| 0.6277        | 4.45  | 1650 | 0.5801          | 0.8570   | 0.8749    | 0.8570 | 0.8554 | 0.8996 |

| 0.6277        | 4.58  | 1700 | 0.6019          | 0.8516   | 0.8679    | 0.8516 | 0.8502 | 0.8960 |

| 0.6277        | 4.72  | 1750 | 0.6178          | 0.8502   | 0.8643    | 0.8502 | 0.8488 | 0.8937 |

| 0.6277        | 4.85  | 1800 | 0.5726          | 0.8637   | 0.8790    | 0.8637 | 0.8627 | 0.9059 |

| 0.6277        | 4.99  | 1850 | 0.5581          | 0.8596   | 0.8751    | 0.8596 | 0.8577 | 0.9020 |

| 0.5166        | 5.12  | 1900 | 0.6064          | 0.8448   | 0.8649    | 0.8448 | 0.8424 | 0.8907 |

| 0.5166        | 5.26  | 1950 | 0.6728          | 0.8516   | 0.8728    | 0.8516 | 0.8502 | 0.8958 |

| 0.5166        | 5.39  | 2000 | 0.5952          | 0.8650   | 0.8818    | 0.8650 | 0.8652 | 0.9067 |

| 0.5166        | 5.53  | 2050 | 0.4922          | 0.8704   | 0.8900    | 0.8704 | 0.8700 | 0.9100 |

| 0.5166        | 5.66  | 2100 | 0.5558          | 0.8812   | 0.8954    | 0.8812 | 0.8817 | 0.9165 |

| 0.5166        | 5.8   | 2150 | 0.6257          | 0.8596   | 0.8778    | 0.8596 | 0.8602 | 0.9030 |

| 0.5166        | 5.93  | 2200 | 0.5901          | 0.8650   | 0.8839    | 0.8650 | 0.8654 | 0.9054 |

| 0.4409        | 6.06  | 2250 | 0.5639          | 0.8650   | 0.8765    | 0.8650 | 0.8642 | 0.9050 |

| 0.4409        | 6.2   | 2300 | 0.5967          | 0.8610   | 0.8793    | 0.8610 | 0.8582 | 0.9022 |

| 0.4409        | 6.33  | 2350 | 0.5664          | 0.8704   | 0.8856    | 0.8704 | 0.8703 | 0.9086 |

| 0.4409        | 6.47  | 2400 | 0.5706          | 0.8745   | 0.8885    | 0.8745 | 0.8742 | 0.9119 |

| 0.4409        | 6.6   | 2450 | 0.5945          | 0.8637   | 0.8768    | 0.8637 | 0.8623 | 0.9039 |

| 0.4409        | 6.74  | 2500 | 0.6792          | 0.8556   | 0.8722    | 0.8556 | 0.8526 | 0.8973 |

| 0.4409        | 6.87  | 2550 | 0.6265          | 0.8623   | 0.8788    | 0.8623 | 0.8612 | 0.9038 |

| 0.3941        | 7.01  | 2600 | 0.5768          | 0.8691   | 0.8845    | 0.8691 | 0.8682 | 0.9090 |

| 0.3941        | 7.14  | 2650 | 0.5951          | 0.8610   | 0.8797    | 0.8610 | 0.8588 | 0.9039 |

| 0.3941        | 7.28  | 2700 | 0.6621          | 0.8596   | 0.8728    | 0.8596 | 0.8570 | 0.9008 |

| 0.3941        | 7.41  | 2750 | 0.5764          | 0.8745   | 0.8876    | 0.8745 | 0.8745 | 0.9128 |

| 0.3941        | 7.55  | 2800 | 0.6080          | 0.8677   | 0.8830    | 0.8677 | 0.8669 | 0.9067 |

| 0.3941        | 7.68  | 2850 | 0.6498          | 0.8691   | 0.8831    | 0.8691 | 0.8675 | 0.9086 |

| 0.3941        | 7.82  | 2900 | 0.6737          | 0.8475   | 0.8641    | 0.8475 | 0.8446 | 0.8928 |

| 0.3941        | 7.95  | 2950 | 0.7467          | 0.8462   | 0.8669    | 0.8462 | 0.8434 | 0.8926 |

| 0.3567        | 8.09  | 3000 | 0.5592          | 0.8745   | 0.8897    | 0.8745 | 0.8744 | 0.9117 |

| 0.3567        | 8.22  | 3050 | 0.5933          | 0.8772   | 0.8913    | 0.8772 | 0.8764 | 0.9128 |

| 0.3567        | 8.36  | 3100 | 0.5294          | 0.8826   | 0.8931    | 0.8826 | 0.8797 | 0.9171 |

| 0.3567        | 8.49  | 3150 | 0.6415          | 0.8664   | 0.8803    | 0.8664 | 0.8647 | 0.9062 |

| 0.3567        | 8.63  | 3200 | 0.6076          | 0.8704   | 0.8862    | 0.8704 | 0.8694 | 0.9085 |

| 0.3567        | 8.76  | 3250 | 0.5787          | 0.8812   | 0.8963    | 0.8812 | 0.8802 | 0.9171 |

| 0.3567        | 8.89  | 3300 | 0.5419          | 0.8799   | 0.8909    | 0.8799 | 0.8789 | 0.9161 |

| 0.3207        | 9.03  | 3350 | 0.5635          | 0.8731   | 0.8837    | 0.8731 | 0.8702 | 0.9108 |

| 0.3207        | 9.16  | 3400 | 0.5488          | 0.8839   | 0.8959    | 0.8839 | 0.8826 | 0.9182 |

| 0.3207        | 9.3   | 3450 | 0.5245          | 0.8839   | 0.8974    | 0.8839 | 0.8834 | 0.9185 |

| 0.3207        | 9.43  | 3500 | 0.6777          | 0.8637   | 0.8780    | 0.8637 | 0.8615 | 0.9038 |

| 0.3207        | 9.57  | 3550 | 0.6236          | 0.8704   | 0.8888    | 0.8704 | 0.8678 | 0.9081 |

| 0.3207        | 9.7   | 3600 | 0.6140          | 0.8718   | 0.8865    | 0.8718 | 0.8714 | 0.9111 |

| 0.3207        | 9.84  | 3650 | 0.6249          | 0.8623   | 0.8718    | 0.8623 | 0.8593 | 0.9040 |

| 0.3207        | 9.97  | 3700 | 0.5656          | 0.8772   | 0.8874    | 0.8772 | 0.8757 | 0.9138 |

| 0.3047        | 10.11 | 3750 | 0.6042          | 0.8731   | 0.8821    | 0.8731 | 0.8709 | 0.9109 |

| 0.3047        | 10.24 | 3800 | 0.5685          | 0.8826   | 0.8921    | 0.8826 | 0.8823 | 0.9170 |

| 0.3047        | 10.38 | 3850 | 0.6586          | 0.8758   | 0.8885    | 0.8758 | 0.8742 | 0.9135 |

| 0.3047        | 10.51 | 3900 | 0.6546          | 0.8758   | 0.8877    | 0.8758 | 0.8743 | 0.9124 |

| 0.3047        | 10.65 | 3950 | 0.6802          | 0.8677   | 0.8796    | 0.8677 | 0.8652 | 0.9076 |

| 0.3047        | 10.78 | 4000 | 0.6282          | 0.8799   | 0.8937    | 0.8799 | 0.8785 | 0.9166 |

| 0.3047        | 10.92 | 4050 | 0.6671          | 0.8677   | 0.8830    | 0.8677 | 0.8663 | 0.9072 |

| 0.2817        | 11.05 | 4100 | 0.5854          | 0.8812   | 0.8957    | 0.8812 | 0.8797 | 0.9166 |

| 0.2817        | 11.19 | 4150 | 0.6261          | 0.8758   | 0.8887    | 0.8758 | 0.8740 | 0.9132 |

| 0.2817        | 11.32 | 4200 | 0.6103          | 0.8799   | 0.8949    | 0.8799 | 0.8790 | 0.9165 |

| 0.2817        | 11.46 | 4250 | 0.5799          | 0.8799   | 0.8893    | 0.8799 | 0.8781 | 0.9161 |

| 0.2817        | 11.59 | 4300 | 0.5591          | 0.8866   | 0.8985    | 0.8866 | 0.8865 | 0.9212 |

| 0.2817        | 11.73 | 4350 | 0.5359          | 0.8893   | 0.9010    | 0.8893 | 0.8892 | 0.9231 |

| 0.2817        | 11.86 | 4400 | 0.6664          | 0.8677   | 0.8811    | 0.8677 | 0.8674 | 0.9076 |

| 0.2817        | 11.99 | 4450 | 0.6034          | 0.8799   | 0.8923    | 0.8799 | 0.8799 | 0.9159 |

| 0.2736        | 12.13 | 4500 | 0.6436          | 0.8745   | 0.8873    | 0.8745 | 0.8722 | 0.9113 |

| 0.2736        | 12.26 | 4550 | 0.6724          | 0.8799   | 0.8963    | 0.8799 | 0.8792 | 0.9161 |

| 0.2736        | 12.4  | 4600 | 0.5840          | 0.8893   | 0.9005    | 0.8893 | 0.8886 | 0.9227 |

| 0.2736        | 12.53 | 4650 | 0.6570          | 0.8785   | 0.8918    | 0.8785 | 0.8779 | 0.9151 |

| 0.2736        | 12.67 | 4700 | 0.6322          | 0.8745   | 0.8877    | 0.8745 | 0.8737 | 0.9119 |

| 0.2736        | 12.8  | 4750 | 0.6748          | 0.8880   | 0.9002    | 0.8880 | 0.8878 | 0.9212 |

| 0.2736        | 12.94 | 4800 | 0.7166          | 0.8718   | 0.8864    | 0.8718 | 0.8695 | 0.9105 |

| 0.2541        | 13.07 | 4850 | 0.5717          | 0.8866   | 0.9001    | 0.8866 | 0.8858 | 0.9198 |

| 0.2541        | 13.21 | 4900 | 0.6211          | 0.8745   | 0.8910    | 0.8745 | 0.8735 | 0.9123 |

| 0.2541        | 13.34 | 4950 | 0.5923          | 0.8799   | 0.8975    | 0.8799 | 0.8805 | 0.9151 |

| 0.2541        | 13.48 | 5000 | 0.5885          | 0.8758   | 0.8891    | 0.8758 | 0.8759 | 0.9132 |

| 0.2541        | 13.61 | 5050 | 0.6245          | 0.8866   | 0.8998    | 0.8866 | 0.8862 | 0.9192 |

| 0.2541        | 13.75 | 5100 | 0.6897          | 0.8718   | 0.8866    | 0.8718 | 0.8706 | 0.9090 |

| 0.2541        | 13.88 | 5150 | 0.6919          | 0.8677   | 0.8807    | 0.8677 | 0.8677 | 0.9076 |

| 0.2384        | 14.02 | 5200 | 0.5996          | 0.8961   | 0.9079    | 0.8961 | 0.8951 | 0.9269 |

| 0.2384        | 14.15 | 5250 | 0.6649          | 0.8880   | 0.9013    | 0.8880 | 0.8861 | 0.9208 |

| 0.2384        | 14.29 | 5300 | 0.7136          | 0.8664   | 0.8854    | 0.8664 | 0.8625 | 0.9061 |

| 0.2384        | 14.42 | 5350 | 0.6670          | 0.8812   | 0.8970    | 0.8812 | 0.8812 | 0.9158 |

| 0.2384        | 14.56 | 5400 | 0.6286          | 0.8826   | 0.8952    | 0.8826 | 0.8820 | 0.9175 |

| 0.2384        | 14.69 | 5450 | 0.6297          | 0.8785   | 0.8877    | 0.8785 | 0.8755 | 0.9151 |

| 0.2384        | 14.82 | 5500 | 0.7010          | 0.8799   | 0.8953    | 0.8799 | 0.8795 | 0.9159 |

| 0.2384        | 14.96 | 5550 | 0.6078          | 0.8853   | 0.8985    | 0.8853 | 0.8822 | 0.9197 |

| 0.2218        | 15.09 | 5600 | 0.6684          | 0.8758   | 0.8917    | 0.8758 | 0.8751 | 0.9127 |

| 0.2218        | 15.23 | 5650 | 0.6672          | 0.8799   | 0.8917    | 0.8799 | 0.8774 | 0.9157 |

| 0.2218        | 15.36 | 5700 | 0.6440          | 0.8839   | 0.8998    | 0.8839 | 0.8828 | 0.9189 |

| 0.2218        | 15.5  | 5750 | 0.6807          | 0.8866   | 0.9002    | 0.8866 | 0.8863 | 0.9204 |

| 0.2218        | 15.63 | 5800 | 0.6325          | 0.8839   | 0.8949    | 0.8839 | 0.8831 | 0.9184 |

| 0.2218        | 15.77 | 5850 | 0.6078          | 0.8934   | 0.9046    | 0.8934 | 0.8918 | 0.9250 |

| 0.2218        | 15.9  | 5900 | 0.6638          | 0.8866   | 0.9005    | 0.8866 | 0.8860 | 0.9202 |

| 0.2192        | 16.04 | 5950 | 0.5822          | 0.8920   | 0.9044    | 0.8920 | 0.8910 | 0.9240 |

| 0.2192        | 16.17 | 6000 | 0.6028          | 0.8785   | 0.8922    | 0.8785 | 0.8765 | 0.9138 |

| 0.2192        | 16.31 | 6050 | 0.6012          | 0.8893   | 0.9013    | 0.8893 | 0.8884 | 0.9227 |

| 0.2192        | 16.44 | 6100 | 0.5819          | 0.8853   | 0.8980    | 0.8853 | 0.8838 | 0.9193 |

| 0.2192        | 16.58 | 6150 | 0.6055          | 0.8826   | 0.8998    | 0.8826 | 0.8818 | 0.9170 |

| 0.2192        | 16.71 | 6200 | 0.6642          | 0.9001   | 0.9123    | 0.9001 | 0.8991 | 0.9297 |

| 0.2192        | 16.85 | 6250 | 0.6235          | 0.8880   | 0.8976    | 0.8880 | 0.8857 | 0.9219 |

| 0.2192        | 16.98 | 6300 | 0.5460          | 0.8920   | 0.9007    | 0.8920 | 0.8905 | 0.9240 |

| 0.2103        | 17.12 | 6350 | 0.5525          | 0.8920   | 0.9031    | 0.8920 | 0.8908 | 0.9242 |

| 0.2103        | 17.25 | 6400 | 0.5847          | 0.8974   | 0.9092    | 0.8974 | 0.8960 | 0.9279 |

| 0.2103        | 17.39 | 6450 | 0.5585          | 0.8961   | 0.9081    | 0.8961 | 0.8958 | 0.9260 |

| 0.2103        | 17.52 | 6500 | 0.5424          | 0.8920   | 0.9008    | 0.8920 | 0.8911 | 0.9247 |

| 0.2103        | 17.65 | 6550 | 0.5473          | 0.9042   | 0.9141    | 0.9042 | 0.9032 | 0.9331 |

| 0.2103        | 17.79 | 6600 | 0.5548          | 0.9001   | 0.9081    | 0.9001 | 0.8990 | 0.9308 |

| 0.2103        | 17.92 | 6650 | 0.6355          | 0.8866   | 0.8983    | 0.8866 | 0.8839 | 0.9194 |

| 0.1962        | 18.06 | 6700 | 0.5878          | 0.9015   | 0.9120    | 0.9015 | 0.8983 | 0.9306 |

| 0.1962        | 18.19 | 6750 | 0.6067          | 0.8907   | 0.9015    | 0.8907 | 0.8890 | 0.9231 |

| 0.1962        | 18.33 | 6800 | 0.5797          | 0.8880   | 0.8989    | 0.8880 | 0.8863 | 0.9212 |

| 0.1962        | 18.46 | 6850 | 0.5842          | 0.8907   | 0.9020    | 0.8907 | 0.8894 | 0.9236 |

| 0.1962        | 18.6  | 6900 | 0.5838          | 0.8961   | 0.9078    | 0.8961 | 0.8947 | 0.9260 |

| 0.1962        | 18.73 | 6950 | 0.5655          | 0.8880   | 0.9021    | 0.8880 | 0.8876 | 0.9212 |

| 0.1962        | 18.87 | 7000 | 0.5601          | 0.8988   | 0.9088    | 0.8988 | 0.8977 | 0.9287 |

| 0.1881        | 19.0  | 7050 | 0.5815          | 0.8988   | 0.9077    | 0.8988 | 0.8972 | 0.9283 |

| 0.1881        | 19.14 | 7100 | 0.6380          | 0.8947   | 0.9054    | 0.8947 | 0.8932 | 0.9259 |

| 0.1881        | 19.27 | 7150 | 0.6770          | 0.8907   | 0.9004    | 0.8907 | 0.8892 | 0.9227 |

| 0.1881        | 19.41 | 7200 | 0.6608          | 0.8907   | 0.8997    | 0.8907 | 0.8890 | 0.9227 |

| 0.1881        | 19.54 | 7250 | 0.7075          | 0.8826   | 0.8974    | 0.8826 | 0.8815 | 0.9174 |

| 0.1881        | 19.68 | 7300 | 0.6649          | 0.8853   | 0.8992    | 0.8853 | 0.8827 | 0.9193 |

| 0.1881        | 19.81 | 7350 | 0.6430          | 0.8880   | 0.8983    | 0.8880 | 0.8868 | 0.9212 |





### Framework versions



- Transformers 4.38.2

- Pytorch 2.3.0

- Datasets 2.19.1

- Tokenizers 0.15.1