File size: 2,196 Bytes
1b1d027 0eb272d cfa17a3 0eb272d 1b1d027 0eb272d 1ee4100 0eb272d 1ee4100 0eb272d 1ee4100 0eb272d 1ee4100 0eb272d cfa17a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: mit
library_name: peft
language:
- en
pipeline_tag: text-generation
tags:
- facebook
- meta
- pytorch
- llama
- llama-2
---
**Website**: [FireAct Agent](https://fireact-agent.github.io)
# **FireAct Llama-2/CodeLlama**
FireAct Llama/CodeLlama is a collection of fine-tuned generative text models for performing ReAct with external search tools. Links to other models can be found in the Index section.
## Foundation Model Details
*Note: As the foundation models, Llama-2 and CodeLlama, are developed by Meta, please also read the guidance and license on their website, [Llama-2](https://huggingface.co/meta-llama) and [CodeLlama](https://huggingface.co/codellama), before using FireAct models.*
**Model Developers** System 2 Research, Cambridge LTL, Monash University, Princeton PLI.
**Variations** FireAct models including Llama-2-7B full fine-tuned models, and Llama-2-[7B,13B], CodeLlama-[7B,13B,34B] LoRA fine-tuned models. All released models are fine-tuned on multi-task (HotpotQA/StrategyQA/MMLU) and multi-type (ReAct/CoT/Reflexion) data.
**Input** Models input text only.
**Output** Models generate text only.
## Index
**Full Fine-tuned Model**
FireAct Llama-2:
- [fireact_llama_2_7b](https://huggingface.co/forestai/fireact_llama_2_7b)
**LoRA Fine-tuned Model**
FireAct Llama-2:
- [fireact_llama_2_7b_lora](https://huggingface.co/forestai/fireact_llama_2_7b_lora)
- [fireact_llama_2_13b_lora](https://huggingface.co/forestai/fireact_llama_2_13b_lora)
FireAct CodeLlama:
- [fireact_codellama_7b_lora](https://huggingface.co/forestai/fireact_codellama_7b_lora)
- [fireact_codellama_13b_lora](https://huggingface.co/forestai/fireact_codellama_13b_lora)
- [fireact_codellama_34b_lora](https://huggingface.co/forestai/fireact_codellama_34b_lora)
## LoRA Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.4.0
|