File size: 4,515 Bytes
c6d4b21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
---
tags:
- generated_from_trainer
datasets:
- image_folder
metrics:
- f1
model-index:
- name: convnext-tiny-224_flyswot
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: image_folder
type: image_folder
args: default
metrics:
- name: F1
type: f1
value: 0.9756290792360154
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# convnext-tiny-224_flyswot
This model was trained from scratch on the image_folder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5319
- F1: 0.9756
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 666
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.1
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 52 | 0.5478 | 0.9720 |
| No log | 2.0 | 104 | 0.5432 | 0.9709 |
| No log | 3.0 | 156 | 0.5437 | 0.9731 |
| No log | 4.0 | 208 | 0.5433 | 0.9712 |
| No log | 5.0 | 260 | 0.5373 | 0.9745 |
| No log | 6.0 | 312 | 0.5371 | 0.9756 |
| No log | 7.0 | 364 | 0.5381 | 0.9737 |
| No log | 8.0 | 416 | 0.5376 | 0.9744 |
| No log | 9.0 | 468 | 0.5431 | 0.9694 |
| 0.4761 | 10.0 | 520 | 0.5468 | 0.9725 |
| 0.4761 | 11.0 | 572 | 0.5404 | 0.9755 |
| 0.4761 | 12.0 | 624 | 0.5481 | 0.9669 |
| 0.4761 | 13.0 | 676 | 0.5432 | 0.9687 |
| 0.4761 | 14.0 | 728 | 0.5409 | 0.9731 |
| 0.4761 | 15.0 | 780 | 0.5403 | 0.9737 |
| 0.4761 | 16.0 | 832 | 0.5393 | 0.9737 |
| 0.4761 | 17.0 | 884 | 0.5412 | 0.9719 |
| 0.4761 | 18.0 | 936 | 0.5433 | 0.9674 |
| 0.4761 | 19.0 | 988 | 0.5367 | 0.9755 |
| 0.4705 | 20.0 | 1040 | 0.5389 | 0.9737 |
| 0.4705 | 21.0 | 1092 | 0.5396 | 0.9737 |
| 0.4705 | 22.0 | 1144 | 0.5514 | 0.9683 |
| 0.4705 | 23.0 | 1196 | 0.5550 | 0.9617 |
| 0.4705 | 24.0 | 1248 | 0.5428 | 0.9719 |
| 0.4705 | 25.0 | 1300 | 0.5371 | 0.9719 |
| 0.4705 | 26.0 | 1352 | 0.5455 | 0.9719 |
| 0.4705 | 27.0 | 1404 | 0.5409 | 0.9680 |
| 0.4705 | 28.0 | 1456 | 0.5345 | 0.9756 |
| 0.4696 | 29.0 | 1508 | 0.5381 | 0.9756 |
| 0.4696 | 30.0 | 1560 | 0.5387 | 0.9705 |
| 0.4696 | 31.0 | 1612 | 0.5540 | 0.9605 |
| 0.4696 | 32.0 | 1664 | 0.5467 | 0.9706 |
| 0.4696 | 33.0 | 1716 | 0.5322 | 0.9756 |
| 0.4696 | 34.0 | 1768 | 0.5325 | 0.9756 |
| 0.4696 | 35.0 | 1820 | 0.5305 | 0.9737 |
| 0.4696 | 36.0 | 1872 | 0.5305 | 0.9769 |
| 0.4696 | 37.0 | 1924 | 0.5345 | 0.9756 |
| 0.4696 | 38.0 | 1976 | 0.5315 | 0.9737 |
| 0.4699 | 39.0 | 2028 | 0.5333 | 0.9756 |
| 0.4699 | 40.0 | 2080 | 0.5316 | 0.9756 |
| 0.4699 | 41.0 | 2132 | 0.5284 | 0.9756 |
| 0.4699 | 42.0 | 2184 | 0.5325 | 0.9756 |
| 0.4699 | 43.0 | 2236 | 0.5321 | 0.9756 |
| 0.4699 | 44.0 | 2288 | 0.5322 | 0.9756 |
| 0.4699 | 45.0 | 2340 | 0.5323 | 0.9756 |
| 0.4699 | 46.0 | 2392 | 0.5318 | 0.9756 |
| 0.4699 | 47.0 | 2444 | 0.5329 | 0.9756 |
| 0.4699 | 48.0 | 2496 | 0.5317 | 0.9756 |
| 0.4701 | 49.0 | 2548 | 0.5317 | 0.9756 |
| 0.4701 | 50.0 | 2600 | 0.5319 | 0.9756 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
|