File size: 3,299 Bytes
c340281 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
tags:
- generated_from_trainer
model-index:
- name: model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# model
This model is a fine-tuned version of [floriangardin/musiclang_medium](https://huggingface.co/floriangardin/musiclang_medium) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5640
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 15
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| No log | 0.15 | 400 | 0.6429 |
| 0.6819 | 0.3 | 800 | 0.6389 |
| 0.6744 | 0.44 | 1200 | 0.6335 |
| 0.6664 | 0.59 | 1600 | 0.6319 |
| 0.659 | 0.74 | 2000 | 0.6246 |
| 0.659 | 0.89 | 2400 | 0.6203 |
| 0.6519 | 1.04 | 2800 | 0.6178 |
| 0.6446 | 1.19 | 3200 | 0.6136 |
| 0.6403 | 1.33 | 3600 | 0.6103 |
| 0.6363 | 1.48 | 4000 | 0.6052 |
| 0.6363 | 1.63 | 4400 | 0.6051 |
| 0.6302 | 1.78 | 4800 | 0.6011 |
| 0.6257 | 1.93 | 5200 | 0.5985 |
| 0.6229 | 2.07 | 5600 | 0.5971 |
| 0.6185 | 2.22 | 6000 | 0.5948 |
| 0.6185 | 2.37 | 6400 | 0.5938 |
| 0.6155 | 2.52 | 6800 | 0.5911 |
| 0.6123 | 2.67 | 7200 | 0.5883 |
| 0.6096 | 2.82 | 7600 | 0.5867 |
| 0.6079 | 2.96 | 8000 | 0.5856 |
| 0.6079 | 3.11 | 8400 | 0.5835 |
| 0.6026 | 3.26 | 8800 | 0.5814 |
| 0.5998 | 3.41 | 9200 | 0.5804 |
| 0.5993 | 3.56 | 9600 | 0.5779 |
| 0.5978 | 3.71 | 10000 | 0.5770 |
| 0.5978 | 3.85 | 10400 | 0.5761 |
| 0.5958 | 4.0 | 10800 | 0.5746 |
| 0.5937 | 4.15 | 11200 | 0.5737 |
| 0.5909 | 4.3 | 11600 | 0.5733 |
| 0.5884 | 4.45 | 12000 | 0.5714 |
| 0.5884 | 4.59 | 12400 | 0.5704 |
| 0.588 | 4.74 | 12800 | 0.5690 |
| 0.5875 | 4.89 | 13200 | 0.5685 |
| 0.5848 | 5.04 | 13600 | 0.5679 |
| 0.5827 | 5.19 | 14000 | 0.5668 |
| 0.5827 | 5.34 | 14400 | 0.5663 |
| 0.5839 | 5.48 | 14800 | 0.5658 |
| 0.5806 | 5.63 | 15200 | 0.5650 |
| 0.5803 | 5.78 | 15600 | 0.5644 |
| 0.5796 | 5.93 | 16000 | 0.5640 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|