File size: 3,352 Bytes
e734391 7ad223a 8a6fc7f e734391 0a901f8 e4b57b8 7aedda1 8a6fc7f 73e10dc 78716a6 901b402 4753789 901b402 8a6fc7f 0a901f8 6d43de4 0a901f8 6d43de4 0a901f8 6d43de4 0a901f8 6d5afa0 8a6fc7f 19cec72 8a6fc7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: apache-2.0
tags:
- medical
- vision
---
# Model Card for MedSAM
MedSAM is a fine-tuned version of [SAM](https://huggingface.co/docs/transformers/main/model_doc/sam) for the medical domain.
This repository is based on the paper, code and pre-trained model released by the authors in July 2023.
## Model Description
MedSAM was trained on a large-scale medical image segmentation dataset of 1,090,486 image-mask pairs collected from different publicly available sources.
The image-mask pairs cover 15 imaging modalities and over 30 cancer types.
MedSAM was initialized with the pre-trained SAM model with the ViT-Base backbone. The prompt encoder weights were frozen, while the image encoder and mask decoder weights were updated during training.
The training was performed for 100 epochs with a batch size of 160 using the AdamW optimizer with a learning rate of 10−4 and a weight decay of 0.01.
- **Repository:** [MedSAM Official GitHub Repository](https://github.com/bowang-lab/medsam)
- **Paper:** [Segment Anything in Medical Images](https://arxiv.org/abs/2304.12306v1)
## Usage
```python
import requests
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
from transformers import SamModel, SamProcessor, SamImageProcessor
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model = SamModel.from_pretrained("flaviagiammarino/medsam-vit-base").to(device)
processor = SamProcessor.from_pretrained("flaviagiammarino/medsam-vit-base")
img_url = "https://raw.githubusercontent.com/bowang-lab/MedSAM/main/assets/img_demo.png"
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
input_boxes = [95., 255., 190., 350.]
inputs = processor(raw_image, input_boxes=[[input_boxes]], return_tensors="pt").to(device)
outputs = model(**inputs, multimask_output=False)
probs = processor.image_processor.post_process_masks(outputs.pred_masks.sigmoid().cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu(), binarize=False)
def show_mask(mask, ax, random_color):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([251/255, 252/255, 30/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor="blue", facecolor=(0, 0, 0, 0), lw=2))
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
ax[0].imshow(np.array(raw_image))
show_box(input_boxes, ax[0])
ax[0].set_title("Input Image and Bounding Box")
ax[0].axis("off")
ax[1].imshow(np.array(raw_image))
show_mask(mask=probs[0] > 0.5, ax=ax[1], random_color=False)
show_box(input_boxes, ax[1])
ax[1].set_title("MedSAM Segmentation")
ax[1].axis("off")
plt.show()
```
![results](scripts/output.png)
## Additional Information
### Licensing Information
The authors have released the model code and pre-trained checkpoint under the [Apache License 2.0](https://github.com/bowang-lab/MedSAM/blob/main/LICENSE).
### Citation Information
```
@article{ma2023segment,
title={Segment anything in medical images},
author={Ma, Jun and Wang, Bo},
journal={arXiv preprint arXiv:2304.12306},
year={2023}
}
``` |