Update README.md
Browse files
README.md
CHANGED
@@ -57,3 +57,60 @@ yields the following output:
|
|
57 |
Span [1,2]: "George Washington" [− Labels: PER (0.9968)]
|
58 |
Span [5]: "Washington" [− Labels: LOC (0.9994)]
|
59 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
Span [1,2]: "George Washington" [− Labels: PER (0.9968)]
|
58 |
Span [5]: "Washington" [− Labels: LOC (0.9994)]
|
59 |
```
|
60 |
+
|
61 |
+
|
62 |
+
### Script to train this model
|
63 |
+
|
64 |
+
The following Flair script was used to train this model:
|
65 |
+
|
66 |
+
```python
|
67 |
+
from flair import set_seed
|
68 |
+
from flair.data import Corpus
|
69 |
+
from flair.datasets import CONLL_03
|
70 |
+
from flair.embeddings import TokenEmbeddings, WordEmbeddings, StackedEmbeddings, FlairEmbeddings
|
71 |
+
from typing import List
|
72 |
+
|
73 |
+
|
74 |
+
# 1. get the corpus
|
75 |
+
corpus: Corpus = CONLL_03()
|
76 |
+
|
77 |
+
# 2. what tag do we want to predict?
|
78 |
+
tag_type = 'ner'
|
79 |
+
|
80 |
+
# 3. make the tag dictionary from the corpus
|
81 |
+
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
|
82 |
+
|
83 |
+
# 4. initialize embeddings
|
84 |
+
embedding_types: List[TokenEmbeddings] = [
|
85 |
+
|
86 |
+
# GloVe embeddings
|
87 |
+
WordEmbeddings('glove'),
|
88 |
+
|
89 |
+
# contextual string embeddings, forward
|
90 |
+
FlairEmbeddings('news-forward'),
|
91 |
+
|
92 |
+
# contextual string embeddings, backward
|
93 |
+
FlairEmbeddings('news-backward'),
|
94 |
+
]
|
95 |
+
|
96 |
+
# embedding stack consists of Flair and GloVe embeddings
|
97 |
+
embeddings = StackedEmbeddings(embeddings=embedding_types)
|
98 |
+
|
99 |
+
# 5. initialize sequence tagger
|
100 |
+
from flair.models import SequenceTagger
|
101 |
+
|
102 |
+
tagger: SequenceTagger = SequenceTagger(hidden_size=256,
|
103 |
+
embeddings=embeddings,
|
104 |
+
tag_dictionary=tag_dictionary,
|
105 |
+
tag_type=tag_type)
|
106 |
+
|
107 |
+
# 6. initialize trainer
|
108 |
+
from flair.trainers import ModelTrainer
|
109 |
+
|
110 |
+
trainer: ModelTrainer = ModelTrainer(tagger, corpus)
|
111 |
+
|
112 |
+
# 7. run training
|
113 |
+
trainer.train('resources/taggers/ner-english',
|
114 |
+
train_with_dev=True,
|
115 |
+
max_epochs=150)
|
116 |
+
```
|