File size: 9,860 Bytes
0498949
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
---
license: apache-2.0
datasets:
- feilongfl/ChineseNewsSummary
language:
- zh
metrics:
- accuracy
library_name: adapter-transformers
pipeline_tag: summarization
widget:
  - text: "概括新闻\n来源:经济参考报\n  国家邮政局监测数据显示,今年春节长假期间(2月10日至17日),全国邮政快递业总体运行安全平稳,寄递渠道畅通有序。具体来看,揽投快递包裹超17亿件,其中,揽收快递包裹10.79亿件,日均揽收量与2023年春节假期相比增长145.2%;投递快递包裹6.41亿件,日均投递量与2023年春节假期相比增长82.1%。\n  国家邮政局相关负责人表示,快递包裹量的良好增长态势,进一步凸显邮政快递业务保通保畅、递送温暖的积极作用,也折射出中国消费新活力。数据显示,自春运开始以来(1月26日至2月17日),全国邮政快递业揽收快递包裹56.55亿件,较2023年春运同期增长30.8%;投递快递包裹59.94亿件,较2023年春运同期增长21%。\n  上述负责人表示,今年春节期间,特色产品和节庆寄递需求旺盛,农产品继续保持增长态势。邮政管理部门坚决守牢安全生产底线,统筹做好春节期间安全生产和寄递服务保障工作。各寄递企业克服低温雨雪天气带来的不利影响,健全完善工作预案,加强人员、运力与物资储备,切实保障在岗快递员合法权益,全力提升年货寄递服务能力。\n  随着春节假期的结束,国内主要快递企业陆续结束春节模式,网络运营转为正常模式。分拨中心、网点相继开工,快递小哥、货车司机和客服人员等回到工作岗位,迎战即将到来的返工返学所带来的业务高峰。\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n \n \n .appendQr_wrap{border:1px solid #E6E6E6;padding:8px;}\n .appendQr_normal{float:left;}\n .appendQr_normal img{width:74px;}\n .appendQr_normal_txt{float:left;font-size:20px;line-height:74px;padding-left:20px;color:#333;}\n \n \n \n\n \n\n\n\n责任编辑:王许宁"
    output:
      text: "{\"title\": \"全国邮政快递业总体运行安全平稳,寄递渠道畅通有序\", \"class\": \"财经\", \"summary\": \"国家邮政局监测数据显示,今年春节长假期间,全国邮政快递业总体运行安全平稳,寄递渠道畅通有序。揽投快递包裹超17亿件,其中,揽收快递包裹10.79亿件,日均揽收量与2023年春节假期相比增长145.2%;投递快递包裹6.41亿件,日均投递量与2023年春节假期相比增长82.1%。数据显示,自春运开始以来,全国邮政快递业揽收快递包裹56.55亿件,较2023年春运同期增长30.8%;投递快递包裹59.94亿件,较2023年春运同期增长21%。国家邮政局相关负责人表示,快递包裹量的良好增长态势,进一步凸显邮政快递业务保通保畅、递送温暖的积极作用,也折射出中国消费新活力。\"}"
---

# Model Card for feilongfl/Mistral-7B-cn_news-v0.1

<!-- Provide a quick summary of what the model is/does. [Optional] -->
Chinese news summary

![example](doc/2024-02-19_05-01.png)

#  Table of Contents

- [Model Card for feilongfl/Mistral-7B-cn_news-v0.1](#model-card-for--model_id-)
- [Table of Contents](#table-of-contents)
- [Table of Contents](#table-of-contents-1)
- [Model Details](#model-details)
  - [Model Description](#model-description)
- [Uses](#uses)
  - [Direct Use](#direct-use)
  - [Downstream Use [Optional]](#downstream-use-optional)
  - [Out-of-Scope Use](#out-of-scope-use)
- [Bias, Risks, and Limitations](#bias-risks-and-limitations)
  - [Recommendations](#recommendations)
- [Training Details](#training-details)
  - [Training Data](#training-data)
  - [Training Procedure](#training-procedure)
    - [Preprocessing](#preprocessing)
    - [Speeds, Sizes, Times](#speeds-sizes-times)
- [Evaluation](#evaluation)
  - [Testing Data, Factors & Metrics](#testing-data-factors--metrics)
    - [Testing Data](#testing-data)
    - [Factors](#factors)
    - [Metrics](#metrics)
  - [Results](#results)
- [Model Examination](#model-examination)
- [Environmental Impact](#environmental-impact)
- [Technical Specifications [optional]](#technical-specifications-optional)
  - [Model Architecture and Objective](#model-architecture-and-objective)
  - [Compute Infrastructure](#compute-infrastructure)
    - [Hardware](#hardware)
    - [Software](#software)
- [Citation](#citation)
- [Glossary [optional]](#glossary-optional)
- [More Information [optional]](#more-information-optional)
- [Model Card Authors [optional]](#model-card-authors-optional)
- [Model Card Contact](#model-card-contact)
- [How to Get Started with the Model](#how-to-get-started-with-the-model)


# Model Details

## Model Description

<!-- Provide a longer summary of what this model is/does. -->
Chinese news summary

- **Developed by:** More information needed
- **Shared by [Optional]:** More information needed
- **Model type:** Language model
- **Language(s) (NLP):** zh
- **License:** apache-2.0
- **Parent Model:** More information needed
- **Resources for more information:** More information needed



# Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

## Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
<!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->




## Downstream Use [Optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
<!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->




## Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
<!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->



# Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.


## Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->





# Training Details

## Training Data

<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

More information on training data needed


## Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

### Preprocessing

More information needed

### Speeds, Sizes, Times

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

More information needed

# Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

## Testing Data, Factors & Metrics

### Testing Data

<!-- This should link to a Data Card if possible. -->

More information needed


### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

More information needed

### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

More information needed

## Results 

More information needed

# Model Examination

More information needed

# Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** More information needed
- **Hours used:** More information needed
- **Cloud Provider:** More information needed
- **Compute Region:** More information needed
- **Carbon Emitted:** More information needed

# Technical Specifications [optional]

## Model Architecture and Objective

More information needed

## Compute Infrastructure

More information needed

### Hardware

More information needed

### Software

More information needed

# Citation

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

More information needed

**APA:**

More information needed

# Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

More information needed

# More Information [optional]

More information needed

# Model Card Authors [optional]

<!-- This section provides another layer of transparency and accountability. Whose views is this model card representing? How many voices were included in its construction? Etc. -->

feilongfl

# Model Card Contact

More information needed

# How to Get Started with the Model

Use the code below to get started with the model.

<details>
<summary> Click to expand </summary>

More information needed

</details>