fcakyon/test-model

Supported Labels

['Cracks-and-spalling', 'object']

How to use

pip install -U ultralytics ultralyticsplus
  • Load model and perform prediction:
from ultralyticsplus import YOLO, render_model_output

# load model
model = YOLO('fcakyon/test-model')

# set model parameters
model.overrides['conf'] = 0.25  # NMS confidence threshold
model.overrides['iou'] = 0.45  # NMS IoU threshold
model.overrides['agnostic_nms'] = False  # NMS class-agnostic
model.overrides['max_det'] = 1000  # maximum number of detections per image

# set image
image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'

# perform inference
for result in model.predict(image, return_outputs=True):
    print(result["det"]) # [[x1, y1, x2, y2, conf, class]]
    print(result["segment"]) # [segmentation mask]
    render = render_model_output(model=model, image=image, model_output=result)
    render.show()
Downloads last month
14
Inference Examples
Inference API (serverless) has been turned off for this model.

Evaluation results