fbaldassarri's picture
Initial Upload
a66031a verified
metadata
language:
  - en
tags:
  - pytorch
  - causal-lm
  - pythia
  - autoround
  - intel-autoround
  - gptq
  - woq
  - intel
license: apache-2.0
model_name: Pythia 6.9b deduped
base_model: EleutherAI/pythia-6.9b-deduped
inference: false
model_creator: EleutherAI
datasets:
  - EleutherAI/pile
pipeline_tag: text-generation
prompt_template: '{prompt} '
quantized_by: fbaldassarri

Model Information

Quantized version of EleutherAI/pythia-6.9b-deduped using torch.float32 for quantization tuning.

  • 4 bits (INT4)
  • group size = 128
  • Symmetrical Quantization
  • Method WoQ (AutoRound format)

Quantization framework: Intel AutoRound v0.4.1

Note: this INT4 version of pythia-6.9b-deduped has been quantized to run inference through CPU.

Replication Recipe

Step 1 Install Requirements

I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.

wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.1.tar.gz
tar -xvzf v0.4.1.tar.gz
cd auto-round-0.4.1
pip install -r requirements-cpu.txt --upgrade

Step 2 Build Intel AutoRound wheel from sources

pip install -vvv --no-build-isolation -e .[cpu]

Step 3 Script for Quantization

  from transformers import AutoModelForCausalLM, AutoTokenizer
  model_name = "EleutherAI/pythia-6.9b-deduped"
  model = AutoModelForCausalLM.from_pretrained(model_name)
  tokenizer = AutoTokenizer.from_pretrained(model_name)
  from auto_round import AutoRound
  bits, group_size, sym, device, amp = 4, 128, True, 'cpu', False
  autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
  autoround.quantize()
  output_dir = "./AutoRound/EleutherAI_pythia-6.9b-deduped-autoround-int4-gs128-sym"
  autoround.save_quantized(output_dir, format='auto_round', inplace=True)

License

Apache 2.0 License

Disclaimer

This quantized model comes with no warranty. It has been developed only for research purposes.