lilt-en-funsd / README.md
favas's picture
End of training
4bd395c
|
raw
history blame
3.42 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - funsd-layoutlmv3
model-index:
  - name: lilt-en-funsd
    results: []

lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9065
  • Answer: {'precision': 0.834096109839817, 'recall': 0.8922888616891065, 'f1': 0.8622117090479007, 'number': 817}
  • Header: {'precision': 0.5319148936170213, 'recall': 0.42016806722689076, 'f1': 0.4694835680751173, 'number': 119}
  • Question: {'precision': 0.8570175438596491, 'recall': 0.9071494893221913, 'f1': 0.8813712223725756, 'number': 1077}
  • Overall Precision: 0.8330
  • Overall Recall: 0.8723
  • Overall F1: 0.8522
  • Overall Accuracy: 0.7918

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.7017 5.26 100 0.7391 {'precision': 0.8216340621403913, 'recall': 0.8739290085679314, 'f1': 0.8469750889679716, 'number': 817} {'precision': 0.4533333333333333, 'recall': 0.2857142857142857, 'f1': 0.3505154639175258, 'number': 119} {'precision': 0.8234323432343235, 'recall': 0.9266480965645311, 'f1': 0.8719965050240279, 'number': 1077} 0.8098 0.8674 0.8376 0.8073
0.1656 10.53 200 0.9065 {'precision': 0.834096109839817, 'recall': 0.8922888616891065, 'f1': 0.8622117090479007, 'number': 817} {'precision': 0.5319148936170213, 'recall': 0.42016806722689076, 'f1': 0.4694835680751173, 'number': 119} {'precision': 0.8570175438596491, 'recall': 0.9071494893221913, 'f1': 0.8813712223725756, 'number': 1077} 0.8330 0.8723 0.8522 0.7918

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2