File size: 3,424 Bytes
c114508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bd395c
 
 
 
 
 
 
 
c114508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216f213
c114508
 
 
 
4bd395c
 
 
 
c114508
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: mit
tags:
- generated_from_trainer
datasets:
- funsd-layoutlmv3
model-index:
- name: lilt-en-funsd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lilt-en-funsd

This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9065
- Answer: {'precision': 0.834096109839817, 'recall': 0.8922888616891065, 'f1': 0.8622117090479007, 'number': 817}
- Header: {'precision': 0.5319148936170213, 'recall': 0.42016806722689076, 'f1': 0.4694835680751173, 'number': 119}
- Question: {'precision': 0.8570175438596491, 'recall': 0.9071494893221913, 'f1': 0.8813712223725756, 'number': 1077}
- Overall Precision: 0.8330
- Overall Recall: 0.8723
- Overall F1: 0.8522
- Overall Accuracy: 0.7918

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 200
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Answer                                                                                                   | Header                                                                                                    | Question                                                                                                  | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.7017        | 5.26  | 100  | 0.7391          | {'precision': 0.8216340621403913, 'recall': 0.8739290085679314, 'f1': 0.8469750889679716, 'number': 817} | {'precision': 0.4533333333333333, 'recall': 0.2857142857142857, 'f1': 0.3505154639175258, 'number': 119}  | {'precision': 0.8234323432343235, 'recall': 0.9266480965645311, 'f1': 0.8719965050240279, 'number': 1077} | 0.8098            | 0.8674         | 0.8376     | 0.8073           |
| 0.1656        | 10.53 | 200  | 0.9065          | {'precision': 0.834096109839817, 'recall': 0.8922888616891065, 'f1': 0.8622117090479007, 'number': 817}  | {'precision': 0.5319148936170213, 'recall': 0.42016806722689076, 'f1': 0.4694835680751173, 'number': 119} | {'precision': 0.8570175438596491, 'recall': 0.9071494893221913, 'f1': 0.8813712223725756, 'number': 1077} | 0.8330            | 0.8723         | 0.8522     | 0.7918           |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2