File size: 3,072 Bytes
5e0c7e1
 
 
 
 
9d89737
5e0c7e1
 
 
 
 
 
9d89737
 
5e0c7e1
9d89737
 
5e0c7e1
 
 
 
 
 
9d89737
5e0c7e1
 
 
 
 
 
 
9d89737
5e0c7e1
9d89737
 
 
 
 
 
5e0c7e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- farleyknight/big_patent_5_percent
metrics:
- rouge
model-index:
- name: patent-summarization-fb-bart-base-2022-09-20
  results:
  - task:
      name: Summarization
      type: summarization
    dataset:
      name: farleyknight/big_patent_5_percent
      type: farleyknight/big_patent_5_percent
      config: all
      split: train
      args: all
    metrics:
    - name: Rouge1
      type: rouge
      value: 39.4401
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# patent-summarization-fb-bart-base-2022-09-20

This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the farleyknight/big_patent_5_percent dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4088
- Rouge1: 39.4401
- Rouge2: 14.2445
- Rougel: 26.2701
- Rougelsum: 33.7535
- Gen Len: 78.9702

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1  | Rouge2 | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 3.0567        | 0.08  | 5000  | 2.8864          | 18.9387 | 7.1014 | 15.4506 | 16.8377   | 19.9979 |
| 2.9285        | 0.17  | 10000 | 2.7800          | 19.8983 | 7.3258 | 16.0823 | 17.7019   | 20.0    |
| 2.9252        | 0.25  | 15000 | 2.7080          | 19.6623 | 7.4627 | 16.0153 | 17.4485   | 20.0    |
| 2.8123        | 0.33  | 20000 | 2.6585          | 19.7414 | 7.5251 | 15.8166 | 17.4668   | 20.0    |
| 2.7117        | 0.41  | 25000 | 2.6070          | 19.7661 | 7.7193 | 16.2795 | 17.7884   | 20.0    |
| 2.7131        | 0.5   | 30000 | 2.5616          | 19.6706 | 7.4229 | 15.7998 | 17.4324   | 20.0    |
| 2.6373        | 0.58  | 35000 | 2.5250          | 20.0155 | 7.6811 | 16.1231 | 17.7578   | 20.0    |
| 2.6785        | 0.66  | 40000 | 2.4977          | 20.0974 | 7.9578 | 16.543  | 18.0242   | 20.0    |
| 2.6265        | 0.75  | 45000 | 2.4701          | 19.994  | 7.9114 | 16.3501 | 17.8786   | 20.0    |
| 2.5833        | 0.83  | 50000 | 2.4441          | 19.9981 | 7.934  | 16.3033 | 17.8674   | 20.0    |
| 2.5579        | 0.91  | 55000 | 2.4251          | 20.0544 | 7.8966 | 16.3889 | 17.9491   | 20.0    |
| 2.5242        | 0.99  | 60000 | 2.4097          | 20.1093 | 8.0572 | 16.4935 | 17.9823   | 20.0    |


### Framework versions

- Transformers 4.23.0.dev0
- Pytorch 1.12.0
- Datasets 2.4.0
- Tokenizers 0.12.1