vit-base-mnist / README.md
librarian-bot's picture
Librarian Bot: Add base_model information to model
4da9950
|
raw
history blame
1.98 kB
metadata
license: apache-2.0
tags:
  - image-classification
  - vision
  - generated_from_trainer
datasets:
  - mnist
metrics:
  - accuracy
base_model: google/vit-base-patch16-224-in21k
model-index:
  - name: vit-base-mnist
    results:
      - task:
          type: image-classification
          name: Image Classification
        dataset:
          name: mnist
          type: mnist
          config: mnist
          split: train
          args: mnist
        metrics:
          - type: accuracy
            value: 0.9948888888888889
            name: Accuracy

vit-base-mnist

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the mnist dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0236
  • Accuracy: 0.9949

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 1337
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3717 1.0 6375 0.0522 0.9893
0.3453 2.0 12750 0.0370 0.9906
0.3736 3.0 19125 0.0308 0.9916
0.3224 4.0 25500 0.0269 0.9939
0.2846 5.0 31875 0.0236 0.9949

Framework versions

  • Transformers 4.22.0.dev0
  • Pytorch 1.11.0a0+17540c5
  • Datasets 2.4.0
  • Tokenizers 0.12.1