vilt_finetuned_2

This model is a fine-tuned version of dandelin/vilt-b32-mlm on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.3663
  • F1: 0.6000
  • Roc Auc: 0.7866
  • Accuracy: 0.5735

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
44.1455 1.0 129 6.5479 0.1270 0.5367 0.0735
2.9608 2.0 258 2.7634 0.4385 0.6965 0.3934
2.3046 3.0 387 2.4919 0.4948 0.7204 0.4412
1.895 4.0 516 2.3418 0.5652 0.7627 0.5257
1.4785 5.0 645 2.6462 0.5720 0.7701 0.5404
1.1491 6.0 774 2.8805 0.6074 0.7884 0.5772
0.8297 7.0 903 3.1832 0.5977 0.7866 0.5735
0.7249 8.0 1032 3.2679 0.6054 0.7903 0.5809
2.1554 9.0 1161 3.2926 0.6119 0.7940 0.5846
0.5323 10.0 1290 3.3663 0.6000 0.7866 0.5735

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
17
Safetensors
Model size
114M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for farishehzad/vilt_finetuned_2

Finetuned
(40)
this model