XYZ-embedding-zh
This is a sentence-transformers model: It maps sentences & paragraphs to a 1792 dimensional dense vector space and can be used for tasks like clustering or semantic search.
Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('fangxq/XYZ-embedding-zh')
embeddings = model.encode(sentences)
print(embeddings)
Evaluation Results
For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 1024, 'out_features': 1792, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
Citing & Authors
- Downloads last month
- 157
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Evaluation results
- map on MTEB CMedQAv1test set self-reported89.618
- mrr on MTEB CMedQAv1test set self-reported91.467
- main_score on MTEB CMedQAv1test set self-reported89.618
- map on MTEB CMedQAv2test set self-reported89.220
- mrr on MTEB CMedQAv2test set self-reported91.300
- main_score on MTEB CMedQAv2test set self-reported89.220
- map_at_1 on MTEB CmedqaRetrievalself-reported27.939
- map_at_10 on MTEB CmedqaRetrievalself-reported41.228
- map_at_100 on MTEB CmedqaRetrievalself-reported43.018
- map_at_1000 on MTEB CmedqaRetrievalself-reported43.120