Edit model card

neural-chat-7b-v3-1 - GGUF

Model creator: Intel Original model: neural-chat-7b-v3-1

Description

This repo contains GGUF format model files for Intel's neural-chat-7b-v3-1.

These files were quantised with Q5_K_M.

Original Readme from Intel

Finetuning on habana HPU

This model is a fine-tuned model based on mistralai/Mistral-7B-v0.1 on the open source dataset Open-Orca/SlimOrca. Then we align it with DPO algorithm. For more details, you can refer our blog: NeuralChat: Simplifying Supervised Instruction Fine-Tuning and Reinforcement Aligning.

Model date

Neural-chat-7b-v3 was trained between September and October, 2023.

Evaluation

We submit our model to open_llm_leaderboard, and the model performance has been improved significantly as we see from the average metric of 7 tasks from the leaderboard.

Model Average ⬆️ ARC (25-s) ⬆️ HellaSwag (10-s) ⬆️ MMLU (5-s) ⬆️ TruthfulQA (MC) (0-s) ⬆️ Winogrande (5-s) GSM8K (5-s) DROP (3-s)
mistralai/Mistral-7B-v0.1 50.32 59.58 83.31 64.16 42.15 78.37 18.12 6.14
Intel/neural-chat-7b-v3 57.31 67.15 83.29 62.26 58.77 78.06 1.21 50.43
Intel/neural-chat-7b-v3-1 59.06 66.21 83.64 62.37 59.65 78.14 19.56 43.84

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-04
  • train_batch_size: 1
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-HPU
  • num_devices: 8
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.02
  • num_epochs: 2.0

Inference with transformers

import transformers
model = transformers.AutoModelForCausalLM.from_pretrained(
  'Intel/neural-chat-7b-v3'
)

Ethical Considerations and Limitations

neural-chat-7b-v3 can produce factually incorrect output, and should not be relied on to produce factually accurate information. neural-chat-7b-v3 was trained on Open-Orca/SlimOrca based on mistralai/Mistral-7B-v0.1. Because of the limitations of the pretrained model and the finetuning datasets, it is possible that this model could generate lewd, biased or otherwise offensive outputs.

Therefore, before deploying any applications of neural-chat-7b-v3, developers should perform safety testing.

Disclaimer

The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes.

Organizations developing the model

The NeuralChat team with members from Intel/SATG/AIA/AIPT. Core team members: Kaokao Lv, Liang Lv, Chang Wang, Wenxin Zhang, Xuhui Ren, and Haihao Shen.

Useful links

  • Intel Neural Compressor link
  • Intel Extension for Transformers link
  • Intel Extension for PyTorch link
Downloads last month
11
GGUF
Model size
7.24B params
Architecture
llama

5-bit

Inference API
Unable to determine this model's library. Check the docs .

Dataset used to train fakezeta/neural-chat-7b-v3-1-GGUF

Collection including fakezeta/neural-chat-7b-v3-1-GGUF