File size: 6,188 Bytes
204edd5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import sys
import logging
import datasets
from datasets import load_dataset
from peft import LoraConfig
import torch
import transformers
from trl import SFTTrainer
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, BitsAndBytesConfig
"""
A simple example on using SFTTrainer and Accelerate to finetune Phi-3 models. For
a more advanced example, please follow HF alignment-handbook/scripts/run_sft.py.
This example has utilized DeepSpeed ZeRO3 offload to reduce the memory usage. The
script can be run on V100 or later generation GPUs. Here are some suggestions on
futher reducing memory consumption:
- reduce batch size
- decrease lora dimension
- restrict lora target modules
Please follow these steps to run the script:
1. Install dependencies:
conda install -c conda-forge accelerate
pip3 install -i https://pypi.org/simple/ bitsandbytes
pip3 install peft transformers trl datasets
pip3 install deepspeed
2. Setup accelerate and deepspeed config based on the machine used:
accelerate config
Here is a sample config for deepspeed zero3:
compute_environment: LOCAL_MACHINE
debug: false
deepspeed_config:
gradient_accumulation_steps: 1
offload_optimizer_device: none
offload_param_device: none
zero3_init_flag: true
zero3_save_16bit_model: true
zero_stage: 3
distributed_type: DEEPSPEED
downcast_bf16: 'no'
enable_cpu_affinity: false
machine_rank: 0
main_training_function: main
mixed_precision: bf16
num_machines: 1
num_processes: 4
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
3. check accelerate config:
accelerate env
4. Run the code:
accelerate launch sample_finetune.py
"""
logger = logging.getLogger(__name__)
###################
# Hyper-parameters
###################
training_config = {
"bf16": True,
"do_eval": False,
"learning_rate": 5.0e-06,
"log_level": "info",
"logging_steps": 20,
"logging_strategy": "steps",
"lr_scheduler_type": "cosine",
"num_train_epochs": 1,
"max_steps": -1,
"output_dir": "./checkpoint_dir",
"overwrite_output_dir": True,
"per_device_eval_batch_size": 4,
"per_device_train_batch_size": 4,
"remove_unused_columns": True,
"save_steps": 100,
"save_total_limit": 1,
"seed": 0,
"gradient_checkpointing": True,
"gradient_checkpointing_kwargs":{"use_reentrant": False},
"gradient_accumulation_steps": 1,
"warmup_ratio": 0.2,
}
peft_config = {
"r": 16,
"lora_alpha": 32,
"lora_dropout": 0.05,
"bias": "none",
"task_type": "CAUSAL_LM",
"target_modules": "all-linear",
"modules_to_save": None,
}
train_conf = TrainingArguments(**training_config)
peft_conf = LoraConfig(**peft_config)
###############
# Setup logging
###############
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = train_conf.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process a small summary
logger.warning(
f"Process rank: {train_conf.local_rank}, device: {train_conf.device}, n_gpu: {train_conf.n_gpu}"
+ f" distributed training: {bool(train_conf.local_rank != -1)}, 16-bits training: {train_conf.fp16}"
)
logger.info(f"Training/evaluation parameters {train_conf}")
logger.info(f"PEFT parameters {peft_conf}")
################
# Modle Loading
################
checkpoint_path = "microsoft/Phi-3-mini-4k-instruct"
# checkpoint_path = "microsoft/Phi-3-mini-128k-instruct"
model_kwargs = dict(
use_cache=False,
trust_remote_code=True,
attn_implementation="flash_attention_2", # loading the model with flash-attenstion support
torch_dtype=torch.bfloat16,
device_map=None
)
model = AutoModelForCausalLM.from_pretrained(checkpoint_path, **model_kwargs)
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path)
tokenizer.model_max_length = 2048
tokenizer.pad_token = tokenizer.unk_token # use unk rather than eos token to prevent endless generation
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
tokenizer.padding_side = 'right'
##################
# Data Processing
##################
def apply_chat_template(
example,
tokenizer,
):
messages = example["messages"]
example["text"] = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=False)
return example
raw_dataset = load_dataset("HuggingFaceH4/ultrachat_200k")
train_dataset = raw_dataset["train_sft"]
test_dataset = raw_dataset["test_sft"]
column_names = list(train_dataset.features)
processed_train_dataset = train_dataset.map(
apply_chat_template,
fn_kwargs={"tokenizer": tokenizer},
num_proc=10,
remove_columns=column_names,
desc="Applying chat template to train_sft",
)
processed_test_dataset = test_dataset.map(
apply_chat_template,
fn_kwargs={"tokenizer": tokenizer},
num_proc=10,
remove_columns=column_names,
desc="Applying chat template to test_sft",
)
###########
# Training
###########
trainer = SFTTrainer(
model=model,
args=train_conf,
peft_config=peft_conf,
train_dataset=processed_train_dataset,
eval_dataset=processed_test_dataset,
max_seq_length=2048,
dataset_text_field="text",
tokenizer=tokenizer,
packing=True
)
train_result = trainer.train()
metrics = train_result.metrics
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
#############
# Evaluation
#############
tokenizer.padding_side = 'left'
metrics = trainer.evaluate()
metrics["eval_samples"] = len(processed_test_dataset)
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# ############
# # Save model
# ############
trainer.save_model(train_conf.output_dir) |