File size: 2,841 Bytes
a8ec889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9adb123
1e1e0d6
7a51771
24d73d1
 
7a51771
9adb123
caa5dc8
 
9adb123
 
 
 
caa5dc8
9adb123
 
 
 
7a51771
 
9adb123
caa5dc8
 
7a51771
caa5dc8
 
9adb123
7a51771
 
caa5dc8
7a51771
 
 
caa5dc8
 
 
 
 
 
9adb123
caa5dc8
7a51771
9adb123
 
 
 
 
 
caa5dc8
 
9adb123
 
 
 
 
 
 
 
caa5dc8
 
9adb123
 
 
 
 
 
 
 
 
 
 
 
 
a8ec889
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
library_name: fairseq
task: audio-to-audio
tags:
- fairseq
- audio
- audio-to-audio
- speech-to-speech-translation

datasets:
- mtedx
- covost2
- europarl_st
- voxpopuli
widget:
- example_title: Common Voice sample 1
  src: https://huggingface.co/facebook/xm_transformer_600m-es_en-multi_domain/resolve/main/common_voice_es_19966634.flac
---
## xm_transformer_s2ut_800m-es-en-st-asr-bt_h1_2022

Speech-to-speech translation model from fairseq S2UT ([paper](https://arxiv.org/abs/2204.02967)/[code](https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_speech/docs/enhanced_direct_s2st_discrete_units.md)):
- Spanish-English
- Trained on 
- Speech synthesis with [facebook/unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj_dur](https://huggingface.co/facebook/unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj_dur)

## Usage
```python
import json
import os
from pathlib import Path

import IPython.display as ipd
from fairseq import hub_utils
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
from fairseq.models.speech_to_text.hub_interface import S2THubInterface
from fairseq.models.text_to_speech import CodeHiFiGANVocoder
from fairseq.models.text_to_speech.hub_interface import VocoderHubInterface

from huggingface_hub import snapshot_download
import torchaudio

cache_dir = os.getenv("HUGGINGFACE_HUB_CACHE")

models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
    "facebook/xm_transformer_s2ut_800m-es-en-st-asr-bt_h1_2022",
    arg_overrides={"config_yaml": "config.yaml", "task": "speech_to_text"},
    cache_dir=cache_dir,
)
model = models[0].cpu()
cfg["task"].cpu = True
generator = task.build_generator([model], cfg)


# requires 16000Hz mono channel audio
audio, _ = torchaudio.load("/path/to/an/audio/file")

sample = S2THubInterface.get_model_input(task, audio)
unit = S2THubInterface.get_prediction(task, model, generator, sample)

# speech synthesis           
library_name = "fairseq"
cache_dir = (
    cache_dir or (Path.home() / ".cache" / library_name).as_posix()
)
cache_dir = snapshot_download(
    f"facebook/unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj_dur", cache_dir=cache_dir, library_name=library_name
)

x = hub_utils.from_pretrained(
    cache_dir,
    "model.pt",
    ".",
    archive_map=CodeHiFiGANVocoder.hub_models(),
    config_yaml="config.json",
    fp16=False,
    is_vocoder=True,
)

with open(f"{x['args']['data']}/config.json") as f:
    vocoder_cfg = json.load(f)
assert (
    len(x["args"]["model_path"]) == 1
), "Too many vocoder models in the input"

vocoder = CodeHiFiGANVocoder(x["args"]["model_path"][0], vocoder_cfg)
tts_model = VocoderHubInterface(vocoder_cfg, vocoder)

tts_sample = tts_model.get_model_input(unit)
wav, sr = tts_model.get_prediction(tts_sample)

ipd.Audio(wav, rate=sr)
```