File size: 37,013 Bytes
a00ee36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
# All contributions by Andy Brock:
# Copyright (c) 2019 Andy Brock

# MIT License
import sys
import os
import numpy as np
import time
import datetime
import json
import math
import torch
import torchvision.transforms as transforms
from torch.utils.data import DataLoader

import shutil
import torch.distributed as dist

sys.path.insert(1, os.path.join(sys.path[0], ".."))
from data_utils.resnet import resnet50
import data_utils.datasets_common as dset
from data_utils.cocostuff_dataset import CocoStuff


class CenterCropLongEdge(object):
    """Crops the given PIL Image on the long edge.
    Parameters
    ----------
        size: sequence or int
            Desired output size of the crop. If size is an int instead of sequence like (h, w),
            a square crop (size, size) is made.
    """

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be cropped.
        Returns:
            PIL Image: Cropped image.
        """
        return transforms.functional.center_crop(img, min(img.size))

    def __repr__(self):
        return self.__class__.__name__


# Modified to be able to do class-balancing
class DistributedSampler(torch.utils.data.sampler.Sampler):
    """Sampler that restricts data loading to a subset of the dataset.

    It is especially useful in conjunction with
    :class:`torch.nn.parallel.DistributedDataParallel`. In such case, each
    process can pass a DistributedSampler instance as a DataLoader sampler,
    and load a subset of the original dataset that is exclusive to it.

    .. note::
        Dataset is assumed to be of constant size.

    Arguments:
        dataset: Dataset used for sampling.
        num_replicas (optional): Number of processes participating in
            distributed training.
        rank (optional): Rank of the current process within num_replicas.
        shuffle (optional): If true (default), sampler will shuffle the indices
    """

    def __init__(
        self, dataset, num_replicas=None, rank=None, shuffle=True, weights=None
    ):
        if num_replicas is None:
            if not torch.dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            num_replicas = torch.dist.get_world_size()
        if rank is None:
            if not torch.dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            rank = torch.dist.get_rank()
        self.dataset = dataset
        self.num_replicas = num_replicas
        self.rank = rank
        self.epoch = 0
        self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
        self.total_size = self.num_samples * self.num_replicas
        self.shuffle = shuffle
        self.weights = weights

    def __iter__(self):
        # deterministically shuffle based on epoch
        g = torch.Generator()
        g.manual_seed(self.epoch)
        if self.shuffle:
            if self.weights is not None:
                print("using class balanced!")
                indices = torch.multinomial(
                    self.weights, len(self.dataset), replacement=True, generator=g
                ).tolist()
            else:
                indices = torch.randperm(len(self.dataset), generator=g).tolist()
        else:
            indices = list(range(len(self.dataset)))

        # add extra samples to make it evenly divisible
        indices += indices[: (self.total_size - len(indices))]
        assert len(indices) == self.total_size

        # subsample
        indices = indices[self.rank : self.total_size : self.num_replicas]
        assert len(indices) == self.num_samples

        return iter(indices)

    def __len__(self):
        return self.num_samples

    def set_epoch(self, epoch):
        self.epoch = epoch


class CheckpointedSampler(torch.utils.data.Sampler):
    """Resumable sample with a random generated initialized with a given seed.

    Arguments
    ---------
        data_source: Dataset
            Dataset to sample from.
        start_itr: int, optional
            Number of iteration to start (or restart) the sampling.
        start_epoch: int, optional
            Number of epoch to start (or restart) the sampling.
        batch_size: int, optional
            Batch size.
        class_balanced: bool, optional
            Sample the data with a class balancing approach.
        custom_distrib_gen: bool, optional
            Use a temperature controlled class balancing.
        samples_per_class: list, optional
            A list of int values that indicate the number of samples per class.
        class_probabilities: list, optional
            A list of float values indicating the probability of a class in the dataset.
        longtail_temperature: float, optional
            Temperature value to smooth the longtail distribution with a softmax function.
        seed: int, optional
            Random seed used.

    """

    def __init__(
        self,
        data_source,
        start_itr=0,
        start_epoch=0,
        batch_size=128,
        class_balanced=False,
        custom_distrib_gen=False,
        samples_per_class=None,
        class_probabilities=None,
        longtail_temperature=1,
        seed=0,
    ):
        self.data_source = data_source
        self.num_samples = len(self.data_source)
        self.start_itr = start_itr % (len(self.data_source) // batch_size)
        self.start_epoch = start_epoch
        self.batch_size = batch_size
        self.class_balanced = class_balanced
        self.custom_distrib_gen = custom_distrib_gen
        self.generator = torch.Generator()
        self.generator.manual_seed(seed)

        if self.class_balanced:
            print("Class balanced sampling.")
            self.weights = make_weights_for_balanced_classes(
                samples_per_class,
                self.data_source.labels,
                1000,
                self.custom_distrib_gen,
                longtail_temperature,
                class_probabilities=class_probabilities,
            )
            self.weights = torch.DoubleTensor(self.weights)

        # Resumable data loader
        print(
            "Using the generator ",
            self.start_epoch,
            " times to resume where we left off.",
        )
        # print('Later, we will resume at iteration ', self.start_itr)
        for epoch in range(self.start_epoch):
            self._sample_epoch_perm()

        if not isinstance(self.num_samples, int) or self.num_samples <= 0:
            raise ValueError(
                "num_samples should be a positive integeral "
                "value, but got num_samples={}".format(self.num_samples)
            )

    def _sample_epoch_perm(self):
        if self.class_balanced:
            out = [
                torch.multinomial(
                    self.weights,
                    len(self.data_source),
                    replacement=True,
                    generator=self.generator,
                )
            ]
        else:
            out = [torch.randperm(len(self.data_source), generator=self.generator)]
        return out

    def __iter__(self):
        out = self._sample_epoch_perm()
        output = torch.cat(out).tolist()
        return iter(output)

    def __len__(self):
        return len(self.data_source)


def make_weights_for_balanced_classes(
    samples_per_class,
    labels=None,
    nclasses=None,
    custom_distrib_gen=False,
    longtail_temperature=1,
    class_probabilities=None,
):
    """It prepares the sampling weights for the DataLoader.

    Arguments
    ---------
        samples_per_class: list
            A list of int values (size C) that indicate the number of samples per class,
             for all C classes.
        labels: list/ NumPy array/ torch Tensor, optional
            A list of size N that contains a class label for each sample.
        nclasses: int, optional
            Number of classes in the dataset.
        custom_distrib_gen: bool, optional
            Use a temperature controlled class balancing.
        longtail_temperature: float, optional
            Temperature value to smooth the longtail distribution with a softmax function.
        class_probabilities: list
            A list of float values (size C) indicating the probability of a class in the dataset.
        seed: int
            Random seed used.
    Returns
    -------
    If custom_distrib_gen is True, a torch Tensor with size C, where C is the number of classes,
     that contains the sampling weights for each class.
    If custom_distrib_gen is False, a list with size N (dataset size) that contains the sampling
     weights for each individual data sample.

    """
    if custom_distrib_gen:
        # temperature controlled distribution
        print(
            "Temperature controlled distribution for balanced classes! " "Temperature:",
            longtail_temperature,
        )
        class_prob = torch.log(torch.DoubleTensor(class_probabilities))
        weight_per_class = torch.exp(class_prob / longtail_temperature) / torch.sum(
            torch.exp(class_prob / longtail_temperature)
        )
    else:
        count = [0] * nclasses
        for item in labels:
            count[item] += 1
        weight_per_class = [0.0] * nclasses
        N = float(sum(count))
        for i in range(nclasses):
            # Standard class balancing
            weight_per_class[i] = N / float(count[i])
    # Convert weighting per class to weighting per example
    weight = [0] * len(labels)
    for idx, val in enumerate(labels):
        # Uniform probability of selecting a sample, given a class
        # p(x|y)p(y)
        weight[idx] = (1 / samples_per_class[val]) * weight_per_class[val]
    return weight


def load_pretrained_feature_extractor(
    pretrained_path="",
    feature_extractor="classification",
    backbone_feature_extractor="resnet50",
):
    """It loads a pre-trained feature extractor.

    Arguments
    ---------
        pretrained_path: str, optional
            Path to the feature extractor's weights.
        feature_extractor: str, optional
            If "classification" a network trained on ImageNet for classification will be used. If
            "selfsupervised", a network trained on ImageNet with self-supervision will be used.
        backbone_feature_extractor: str, optional
            Name of the backbone for the feature extractor. Currently, only ResNet50 is supported.
    Returns
    -------
    A Pytorch network initialized with pre-trained weights.

    """
    if backbone_feature_extractor == "resnet50":
        print("using resnet50 to extract features")
        net = resnet50(
            pretrained=False if pretrained_path != "" else True, classifier_run=False
        ).cuda()
    else:
        raise ValueError("Not implemented for backbones other than ResNet50.")
    if pretrained_path != "":
        print("Loading pretrained weights from: ", pretrained_path)

        # original saved file with DataParallel
        state_dict = torch.load(pretrained_path)
        if not feature_extractor == "selfsupervised":
            state_dict = state_dict["state_dict_best"]["feat_model"]

        # create new OrderedDict that does not contain `module.`
        from collections import OrderedDict

        new_state_dict = OrderedDict()
        for k, v in state_dict.items():
            if "module." in k:
                name = k[7:]  # remove `module.`
            elif "_feature_blocks." in k:
                name = k.replace("_feature_blocks.", "")
            else:
                name = k
            if name in net.state_dict().keys():
                new_state_dict[name] = v
            else:
                print("key ", name, " not in dict")

        for key in net.state_dict().keys():
            if key not in new_state_dict.keys():
                print("Network key ", key, " not in dict to load")
        if not feature_extractor == "selfsupervised":
            state_dict = torch.load(pretrained_path)["state_dict_best"]["classifier"]
            # create new OrderedDict that does not contain `module.`
            for k, v in state_dict.items():
                name = k[7:]  # remove `module.`
                new_state_dict[name] = v
        # load params
        net.load_state_dict(
            new_state_dict,
            strict=False if feature_extractor == "selfsupervised" else True,
        )
    else:
        print("Using pretrained weights on full ImageNet.")
    return net


def get_dataset_images(
    resolution,
    data_path,
    load_in_mem=False,
    augment=False,
    longtail=False,
    split="train",
    test_part=False,
    which_dataset="imagenet",
    instance_json="",
    stuff_json="",
    **kwargs
):
    """It prepares a dataset that reads the files from a folder.

    Arguments
    ---------
        resolution: int
            Dataset resolution.
        data_path: str
            Path where to find the data.
        load_in_mem: bool, optional
            If True, load all data in memory.
        augment: bool, optional
            If True, use horizontal flips as data augmentation.
        longtail: bool, optional
            If True, use the longtailed version of ImageNet (ImageNet-LT).
        split: str, optional
            Split name to use.
        test_part: bool, optional
            Only used for COCO-Stuff. If True, use the evaluation set instead of the validation set.
        which_dataset: str, optional
            Dataset name.
        instance_json: str, optional
            Path where to find the JSON data for COCO-Stuff instances.
        stuff_json: str, optional
            Path where to find the JSON data for COCO-Stuff stuff.
    Returns
    -------
    A Dataset class.

    """
    # Data transforms
    norm_mean = [0.5, 0.5, 0.5]
    norm_std = [0.5, 0.5, 0.5]
    if which_dataset not in ["coco"]:
        transform_list = [CenterCropLongEdge(), transforms.Resize(resolution)]
    else:
        transform_list = [transforms.Resize(resolution)]
    transform_list = transforms.Compose(
        transform_list
        + [transforms.ToTensor(), transforms.Normalize(norm_mean, norm_std)]
    )
    if augment:
        transform_list = transforms.Compose(
            transform_list + [transforms.RandomHorizontalFlip()]
        )

    if which_dataset not in ["coco"]:
        which_dataset_file = dset.ImageFolder
        dataset_kwargs = {}
    else:
        print("Using coco-stuff dataset class")
        which_dataset_file = CocoStuff
        dataset_kwargs = {
            "image_dir": data_path,
            "instances_json": instance_json,
            "stuff_json": stuff_json,
            "image_size": resolution,
            "iscrowd": True if split == "train" else False,
            "test_part": test_part,
        }
    dataset = which_dataset_file(
        root=data_path,
        transform=transform_list,
        load_in_mem=load_in_mem,
        split=split,
        longtail=longtail,
        **dataset_kwargs
    )
    return dataset


def get_dataset_hdf5(
    resolution,
    data_path,
    augment=False,
    longtail=False,
    local_rank=0,
    copy_locally=False,
    ddp=True,
    tmp_dir="",
    class_cond=True,
    instance_cond=False,
    feature_extractor="classification",
    backbone_feature_extractor="resnext50",
    which_nn_balance="instance_balance",
    which_dataset="imagenet",
    split="train",
    test_part=False,
    kmeans_subsampled=-1,
    n_subsampled_data=-1,
    feature_augmentation=False,
    filter_hd=-1,
    k_nn=50,
    load_in_mem_feats=False,
    compute_nns=False,
    **kwargs
):
    """It prepares a dataset that reads the data from HDF5 files.

    Arguments
    ---------
        resolution: int
            Dataset resolution.
        data_path: str
            Path where to find the data.
        load_in_mem: bool, optional
            If True, load all data in memory.
        augment: bool, optional
            If True, use horizontal flips as data augmentation.
        longtail: bool, optional
            If True, use the longtailed version of ImageNet (ImageNet-LT).
        local_rank: int, optional
            Index indicating the rank of the DistributedDataParallel (DDP) process in the local
             machine. It is set to 0 by default or if DDP is not used.
        copy_locally: bool, optional
            If true, the HDF5 files will be copied locally to the machine.
             Useful if the data is in a server.
        ddp: bool, optional
            If True, use DistributedDataParallel (DDP).
        tmp_dir: str, optional
            Path where to copy the dataset HDF5 files locally.
        class_cond: bool, optional
            If True, the dataset will load the labels of the neighbor real samples.
        instance_cond: bool, optional
            If True, the dataset will load the instance features.
        feature_extractor: str, optional
            If "classification" a network trained on ImageNet for classification will be used. If
            "selfsupervised", a network trained on ImageNet with self-supervision will be used.
        backbone_feature_extractor: str, optional
            Name of the backbone for the feature extractor. Currently, only ResNet50 is supported.
        which_nn_balance: str, optional
            Whether to sample an instance or a neighbor class first. By default,
            ``instance_balance`` is used. Using ``nnclass_balance`` allows class balancing
             to be applied.
        split: str, optional
            Split name to use.
        test_part: bool, optional
            Only used for COCO-Stuff. If True, use the evaluation set instead of the validation set.
        kmeans_subsampled: int, optional
            If other than -1, that number of data points are selected with k-means from the dataset.
            It reduces the amount of available data to train or test the model.
        n_subsampled_data: int, optional
            If other than -1, that number of data points are randomly selected from the dataset.
            It reduces the amount of available data to train or test the model.
        feature_augmentation: bool, optional
            Use the instance features of the flipped ground-truth image instances as
            conditioning, with a 50% probability.
        filter_hd: int, optional
            Only used for COCO-Stuff dataset. If -1, all COCO-Stuff evaluation set is used.
            If 0, only images with seen class combinations are used.
            If 1, only images with unseen class combinations are used.
        k_nn: int, optional
            Size of the neighborhood obtained with the k-NN algorithm.
        load_in_mem_feats: bool, optional
            Load all instance features in memory.
        compute_nns: bool, optional
            If True, compute the nearest neighbors. If False, load them from a file with
            pre-computed neighbors.
    Returns
    -------
    A Dataset class.

    """

    if which_dataset in ["imagenet", "imagenet_lt"]:
        dataset_name_prefix = "ILSVRC"
    elif which_dataset == "coco":
        dataset_name_prefix = "COCO"
    else:
        dataset_name_prefix = which_dataset
    # HDF5 file name
    hdf5_filename = "%s%i%s%s%s" % (
        dataset_name_prefix,
        resolution,
        "" if not longtail else "longtail",
        "_val" if split == "val" else "",
        "_test" if test_part else "",
    )

    # Data paths
    data_path_xy = os.path.join(data_path, hdf5_filename + "_xy.hdf5")
    data_path_feats, data_path_nns, kmeans_file = None, None, None
    if instance_cond:
        data_path_feats = os.path.join(
            data_path,
            hdf5_filename
            + "_feats_%s_%s.hdf5" % (feature_extractor, backbone_feature_extractor),
        )
        if not compute_nns:
            data_path_nns = os.path.join(
                data_path,
                hdf5_filename
                + "_feats_%s_%s_nn_k%i.hdf5"
                % (feature_extractor, backbone_feature_extractor, k_nn),
            )
        # Load a file with indexes of the samples selected with k-means.
        if kmeans_subsampled > -1:
            if which_dataset == "imagenet":
                d_name = "IN"
            elif which_dataset == "coco":
                d_name = "COCO"
            else:
                d_name = which_dataset
            kmeans_file = (
                d_name
                + "_res"
                + str(resolution)
                + "_rn50_"
                + feature_extractor
                + "_kmeans_k"
                + str(kmeans_subsampled)
                + ".npy"
            )
            kmeans_file = os.path.join(data_path, kmeans_file)

    # Optionally copy the data locally in the cluster.
    if copy_locally:
        tmp_file = os.path.join(tmp_dir, hdf5_filename + "_xy.hdf5")
        print(tmp_file)
        if instance_cond:
            tmp_file_feats = os.path.join(
                tmp_dir,
                hdf5_filename
                + "_feats_%s_%s.hdf5" % (feature_extractor, backbone_feature_extractor),
            )
            print(tmp_file_feats)

        # Only copy locally for the first device in each machine
        if local_rank == 0:  # device == 'cuda:0':
            shutil.copy2(data_path_xy, tmp_file)
            if instance_cond:
                shutil.copy2(data_path_feats, tmp_file_feats)
        data_path_xy = tmp_file
        if instance_cond:
            data_path_feats = tmp_file_feats

        # Wait for the main process to copy the data locally
        if ddp:
            dist.barrier()

    # Data transforms
    if augment:
        transform_list = transforms.RandomHorizontalFlip()
    else:
        transform_list = None

    dataset = dset.ILSVRC_HDF5_feats(
        root=data_path_xy,
        root_feats=data_path_feats,
        root_nns=data_path_nns,
        transform=transform_list,
        load_labels=class_cond,
        load_features=instance_cond,
        load_in_mem_images=False,
        load_in_mem_labels=True,
        load_in_mem_feats=load_in_mem_feats,
        k_nn=k_nn,
        which_nn_balance=which_nn_balance,
        kmeans_file=kmeans_file,
        n_subsampled_data=n_subsampled_data,
        feature_augmentation=feature_augmentation,
        filter_hd=filter_hd,
    )
    return dataset


def filter_by_hd(ood_distance):
    """Pre-select image indexes in COCO-Stuff evaluation set according to its class composition.

    Parameters
    ----------
        ood_distance: int
            Minimum hamming distance (HD) between the set of classes present in the evaluation image
            and all training images.
            If 0, pre-selected images will be the ones that only contain class sets already seen
             during training.
            If other than 0, all other images with unseen class sets will be selected,
             regardless of the hamming distance (HD>0).
    Returns
    -------
        List of pre-selected images.
    """

    image_ids_original = np.load(
        "../coco_stuff_val_indexes/cocostuff_val2_all_idxs.npy", allow_pickle=True
    )
    print("Filtering new ids!")
    odd_image_ids = np.load(
        os.path.join(
            "../coco_stuff_val_indexes", "val2" + "_image_ids_by_hd_75ktraining_im.npy"
        ),
        allow_pickle=True,
    )
    if ood_distance == 0:
        image_ids = odd_image_ids[ood_distance]
    else:
        total_img_ids = []
        for ood_dist in range(1, len(odd_image_ids)):
            total_img_ids += odd_image_ids[ood_dist]
        image_ids = total_img_ids

    allowed_idxs = []
    for i_idx, id in enumerate(image_ids_original):
        if id in image_ids:
            allowed_idxs.append(i_idx)
    allowed_idxs = np.array(allowed_idxs)
    print("Num images after filtering ", len(allowed_idxs))
    return allowed_idxs


def get_dataloader(
    dataset,
    batch_size=64,
    num_workers=8,
    shuffle=True,
    pin_memory=True,
    drop_last=True,
    start_itr=0,
    start_epoch=0,
    use_checkpointable_sampler=False,
    use_balanced_sampler=False,
    custom_distrib_gen=False,
    samples_per_class=None,
    class_probabilities=None,
    seed=0,
    longtail_temperature=1,
    rank=0,
    world_size=-1,
    **kwargs
):
    """Get DataLoader to iterate over the dataset.

    Parameters
    ----------
        dataset: Dataset
            Class with the specified dataset characteristics.
        batch_size: int, optional
            Batch size.
        num_workers: int, optional
            Number of workers for the dataloader.
        shuffle: bool, optional
            If True, the data is shuffled. If a sampler is used (use_checkpointable_sampler=True,
            use_balanced_sampler=True or world_size>-1), this parameter is not used.
        pin_memory: bool, optional
            Pin memory in the dataloader.
        drop_last: bool, optional
            Drop last incomplete batch in the dataloader.
        start_itr: int, optional
            Iteration number to resume the sample from. Only used with
             use_checkpointable_sampler=True.
        start_epoch: int, optional
            Epoch number to resume the sample from. Only used with
             use_checkpointable_sampler=True.
        use_checkpointable_sampler: bool, optional
            If True, use the CheckpointedSampler class to resume jobs from the last seen batch
             (deterministic).
        use_balanced_sampler: bool, optional
            If True, balance the data according to a specific class distribution. Use in conjunction
             with ``custom_distrib_gen``, ``samples_per_class``, ``class_probabilities`` and
              ``longtail_temperature``.
        custom_distrib_gen: bool, optional
            Use a temperature controlled class balancing.
        samples_per_class: list, optional
            A list of int values that indicate the number of samples per class.
        class_probabilities: list, optional
            A list of float values indicating the probability of a class in the dataset.
        longtail_temperature: float, optional
            Temperature value to smooth the longtail distribution with a softmax function.
        seed: int, optional
            Random seed used.
        rank: int, optional
            Rank of the current process (if using DistributedDataParallel training).
        world_size: int, optional
            World size (if using DistributedDataParallel training).
    Returns
    -------
        An instance of DataLoader.
    """

    # Prepare loader; the loaders list is for forward compatibility with
    # using validation / test splits.
    # if use_multiepoch_sampler:
    loader_kwargs = {
        "num_workers": num_workers,
        "pin_memory": pin_memory,
        "drop_last": drop_last,
    }
    print("Dropping last batch? ", drop_last)
    # Otherwise, it has issues dividing the batch for accumulations
    # if longtail:
    #   loader_kwargs.update({'drop_last': drop_last})
    if use_checkpointable_sampler:
        print(
            "Using checkpointable sampler from start_itr %d..., using seed %d"
            % (start_itr, seed)
        )

        sampler = CheckpointedSampler(
            dataset,
            start_itr,
            start_epoch,
            batch_size,
            class_balanced=use_balanced_sampler,
            custom_distrib_gen=custom_distrib_gen,
            longtail_temperature=longtail_temperature,
            samples_per_class=samples_per_class,
            class_probabilities=class_probabilities,
            seed=seed,
        )
        loader = DataLoader(
            dataset,
            batch_size=batch_size,
            sampler=sampler,
            shuffle=False,
            worker_init_fn=seed_worker,
            **loader_kwargs
        )
    else:
        if use_balanced_sampler:
            print("Balancing real data! Custom? ", custom_distrib_gen)
            weights = make_weights_for_balanced_classes(
                samples_per_class,
                dataset.labels,
                1000,
                custom_distrib_gen,
                longtail_temperature,
                class_probabilities=class_probabilities,
            )
            weights = torch.DoubleTensor(weights)
        else:
            weights = None
        if world_size == -1:
            if use_balanced_sampler:
                sampler = torch.utils.data.sampler.WeightedRandomSampler(
                    weights, len(weights)
                )
                shuffle = False
            else:
                sampler = None
        else:
            sampler = DistributedSampler(
                dataset, num_replicas=world_size, rank=rank, weights=weights
            )
            shuffle = False
        print("Loader workers?", loader_kwargs, " with shuffle?", shuffle)
        loader = DataLoader(
            dataset,
            batch_size=batch_size,
            shuffle=shuffle,
            sampler=sampler,
            worker_init_fn=seed_worker if use_checkpointable_sampler else None,
            **loader_kwargs
        )

    return loader


def sample_conditioning_values(
    z_,
    y_,
    ddp=False,
    batch_size=1,
    weights_sampling=None,
    dataset=None,
    constant_conditioning=False,
    class_cond=True,
    instance_cond=False,
    nn_sampling_strategy="instance_balance",
):
    """It samples conditionings from the noise distribution and dataset statistics.

    Arguments
    ---------
        z_: Distribution
            Noise distribution.
        y_: Distribution
            Labels distribution (
        ddp: bool, optional
            If True, use DistributedDataParallel (DDP).
        batch_size: int, optional
            Batch size.
        weights_sampling: NumPy array, optional
            Weights to balance the sampling of the conditionings.
        dataset: Dataset
            Instance of a dataset.
        constant_conditioning: bool, optional
            If True, set all labels to zero.
        class_cond: bool, optional
            If True, the dataset will load the labels of the neighbor real samples.
        instance_cond: bool, optional
            If True, the dataset will load the instance features.
        nn_sampling_strategy: str, optional
            Whether to sample an instance or a neighbor class first. By default,
            ``instance_balance`` is used. Using ``nnclass_balance`` allows class balancing
             to be applied.
    Returns
    -------
        If not using labels (class_cond=False) nor instance features (instance_cond=False),
         return the sampled noise vectors.
        If not using labels (class_cond=False), return the sampled noise vectors and instance
        feature vectors, sampled according to the ``nn_sampling_strategy`` and ``weights_sampling``.
        If using labels (class_cond=True), return the sampled noise vectors, instance feature
         vectors and the neighbor class labels.

    """
    with torch.no_grad():
        z_.sample_()
        if not class_cond and not instance_cond:
            return z_
        elif class_cond and not instance_cond:
            y_.sample_()
            if constant_conditioning:
                return z_, torch.zeros_like(y_)
            else:
                if ddp:
                    return z_, y_
                else:
                    return z_, y_.data.clone()
        else:
            if nn_sampling_strategy == "instance_balance":
                sampling_funct_name = dataset.sample_conditioning_instance_balance
            elif nn_sampling_strategy == "nnclass_balance":
                sampling_funct_name = dataset.sample_conditioning_nnclass_balance

            labels_g, f_g = sampling_funct_name(batch_size, weights_sampling)
            if instance_cond and not class_cond:
                return z_, f_g
            elif instance_cond and class_cond:
                return z_, labels_g, f_g


# Convenience function to prepare a z and y vector
def prepare_z_y(
    G_batch_size,
    dim_z,
    nclasses,
    device="cuda",
    fp16=False,
    z_var=1.0,
    longtail_gen=False,
    custom_distrib=False,
    longtail_temperature=1,
    class_probabilities=None,
):
    """Prepare the noise and label distributions.

    Arguments
    ---------
        G_batch_size: int
            Batch size for the generator.
        dim_z: int
            Noise vector dimensionality.
        nclasses: int
            Number of classes in the dataset
        fp16: bool, optional
            Float16.
        z_var: float, optional
            Variance for the noise normal distribution.
        longtail_gen: bool, optional
            If true, use the longtail distribution for the classes (ImageNet-LT)
        custom_distrib: bool, optional
            If true, use a temperature annealed class distribution.
        longtail_temperature: float, optional
            Temperature value to smooth the longtail distribution with a softmax function.
        class_probabilities: list, optional
            A list of float values indicating the probability of a class in the dataset.

    Returns
    -------
       The noise and class distributions.
    """
    z_ = Distribution(torch.randn(G_batch_size, dim_z, requires_grad=False))
    z_.init_distribution("normal", mean=0, var=z_var)
    #  z_ = z_.to(device, torch.float16 if fp16 else torch.float32)

    if fp16:
        z_ = z_.half()

    y_ = Distribution(torch.zeros(G_batch_size, requires_grad=False))
    if longtail_gen:
        y_.init_distribution(
            "categorical_longtail",
            num_categories=nclasses,
            class_prob=class_probabilities,
        )
    elif custom_distrib:
        y_.init_distribution(
            "categorical_longtail_temperature",
            num_categories=nclasses,
            temperature=longtail_temperature,
            class_prob=class_probabilities,
        )
    else:
        y_.init_distribution("categorical", num_categories=nclasses)
    # y_ = y_.to(device, torch.int64)
    return z_, y_


# A highly simplified convenience class for sampling from distributions
# One could also use PyTorch's inbuilt distributions package.
# Note that this class requires initialization to proceed as
# x = Distribution(torch.randn(size))
# x.init_distribution(dist_type, **dist_kwargs)
# x = x.to(device,dtype)
# This is partially based on https://discuss.pytorch.org/t/subclassing-torch-tensor/23754/2
class Distribution(torch.Tensor):
    # Init the params of the distribution
    def init_distribution(self, dist_type, class_prob=None, **kwargs):
        self.dist_type = dist_type
        self.dist_kwargs = kwargs
        if self.dist_type == "normal":
            self.mean, self.var = kwargs["mean"], kwargs["var"]
        elif self.dist_type == "categorical":
            self.num_categories = kwargs["num_categories"]
        elif self.dist_type == "categorical_longtail":
            print("(class conditioning sampler) using longtail distribution")
            self.num_categories = kwargs["num_categories"]
            self.class_prob = torch.DoubleTensor(class_prob)
        elif self.dist_type == "categorical_longtail_temperature":
            print(
                "(class conditioning sampler) Softening the long-tail distribution with temperature ",
                kwargs["temperature"],
            )
            self.num_categories = kwargs["num_categories"]
            self.class_prob = torch.log(torch.DoubleTensor(class_prob))
            self.class_prob = torch.exp(
                self.class_prob / kwargs["temperature"]
            ) / torch.sum(torch.exp(self.class_prob / kwargs["temperature"]))

    def seed_generator(self, seed):
        self.generator.manual_seed(seed)

    def sample_(self):
        if self.dist_type == "normal":
            self.normal_(self.mean, self.var)
        elif self.dist_type == "categorical":
            self.random_(0, self.num_categories)
        elif (
            "categorical_longtail" in self.dist_type
            or "categorical_longtail_temperature" in self.dist_type
        ):
            self.data = torch.multinomial(
                self.class_prob, len(self), replacement=True
            ).to(self.device)
            # return self.variable

    # Silly hack: overwrite the to() method to wrap the new object
    # in a distribution as well
    # def to(self, *args, **kwargs):
    #     new_obj = Distribution(self)
    #     new_obj.init_distribution(self.dist_type, **self.dist_kwargs)
    #     new_obj.data = super().to(*args, **kwargs)
    #     return new_obj


def seed_worker(worker_id):
    worker_seed = torch.initial_seed() + worker_id