File size: 32,318 Bytes
a00ee36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
# All contributions by Andy Brock:
# Copyright (c) 2019 Andy Brock
#
# All contributions made by NAVER Corp.:
# Copyright (c) 2020-present NAVER Corp.
#
# MIT license

import sys
import os
import os.path

sys.path.insert(1, os.path.join(sys.path[0], ".."))
from data_utils import utils as data_utils
from PIL import Image
import numpy as np
from tqdm import tqdm
import random
import sklearn.metrics
import torch.utils.data as data
try:
    import faiss
    USE_FAISS = 1
except:
    print('Faiss library not found!')
    USE_FAISS = 0
import h5py as h5
import torch

IMG_EXTENSIONS = [".jpg", ".jpeg", ".png", ".ppm", ".bmp", ".pgm"]


def is_image_file(filename):
    """Checks if a file is an image.



    Args:

        filename (string): path to a file



    Returns:

        bool: True if the filename ends with a known image extension

    """
    filename_lower = filename.lower()
    return any(filename_lower.endswith(ext) for ext in IMG_EXTENSIONS)


def find_classes(dir):
    classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
    classes.sort()
    class_to_idx = {classes[i]: i for i in range(len(classes))}
    return classes, class_to_idx


def make_dataset(dir, class_to_idx):
    images = []
    dir = os.path.expanduser(dir)
    for target in tqdm(sorted(os.listdir(dir))):
        d = os.path.join(dir, target)
        if not os.path.isdir(d):
            continue

        for root, _, fnames in sorted(os.walk(d)):
            for fname in sorted(fnames):
                if is_image_file(fname):
                    path = os.path.join(root, fname)
                    item = (path, class_to_idx[target])
                    images.append(item)

    return images


def pil_loader(path):
    # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
    with open(path, "rb") as f:
        img = Image.open(f)
        return img.convert("RGB")


def accimage_loader(path):
    import accimage

    try:
        return accimage.Image(path)
    except IOError:
        # Potentially a decoding problem, fall back to PIL.Image
        return pil_loader(path)


def default_loader(path):
    from torchvision import get_image_backend

    if get_image_backend() == "accimage":
        return accimage_loader(path)
    else:
        return pil_loader(path)


class ImageFolder(data.Dataset):
    """A generic data loader where the images are arranged in this way: ::



      root/dogball/xxx.png

      root/dogball/xxy.png

      root/dogball/xxz.png



      root/cat/123.png

      root/cat/nsdf3.png

      root/cat/asd932_.png



  Parameters

  ----------

      root: string. Root directory path.

      transform: callable, optional. A function/transform that  takes in an PIL image

          and returns a transformed version. E.g, ``transforms.RandomCrop``

      target_transform: callable, optional. A function/transform that takes in the

          target and transforms it.

      loader: callable, optional. A function to load an image given its path.



   Attributes

   ----------

      classes: list. List of the class names.

      class_to_idx: dict. Dict with items (class_name, class_index).

      imgs: list. List of (image path, class_index) tuples

  """

    def __init__(

        self,

        root,

        transform=None,

        target_transform=None,

        loader=default_loader,

        load_in_mem=False,

        index_filename="imagenet_imgs.npz",

        longtail=False,

        subsampled=False,

        split="train",

        **kwargs

    ):

        classes, class_to_idx = find_classes(root)
        # Load pre-computed image directory walk
        if False:  # os.path.exists(os.path.join(index_filename)):
            print("Loading pre-saved Index file %s..." % index_filename)
            imgs = np.load(os.path.join(index_filename))["imgs"]
        #   If first time, walk the folder directory and save the
        #  results to a pre-computed file.
        else:
            print("Generating  Index file %s..." % index_filename)
            if not longtail:
                imgs = make_dataset(root, class_to_idx)
                if subsampled:
                    # Same number of samples as in ImageNet-LT
                    imgs = random.sample(imgs, 115846)
            else:
                imgs = []
                print("Using long-tail version of the dataset with split ", split, "!")
                with open(
                    "BigGAN_PyTorch/imagenet_lt/ImageNet_LT_" + split + ".txt"
                ) as f:
                    for line in f:
                        imgs.append(
                            (
                                os.path.join(
                                    root, "/".join(line.split()[0].split("/")[1:])
                                ),
                                int(line.split()[1]),
                            )
                        )
            np.savez_compressed(os.path.join(index_filename), **{"imgs": imgs})
        if len(imgs) == 0:
            raise (
                RuntimeError(
                    "Found 0 images in subfolders of: " + root + "\n"
                    "Supported image extensions are: " + ",".join(IMG_EXTENSIONS)
                )
            )

        self.root = root
        self.imgs = imgs
        self.classes = classes
        self.class_to_idx = class_to_idx
        self.transform = transform
        self.target_transform = target_transform
        self.loader = loader
        self.load_in_mem = load_in_mem

        if self.load_in_mem:
            print("Loading all images into memory...")
            self.data, self.labels = [], []
            for index in tqdm(range(len(self.imgs))):
                path, target = imgs[index][0], imgs[index][1]
                self.data.append(self.transform(self.loader(path)))
                self.labels.append(target)

    def __getitem__(self, index):
        """

    Parameters

    ----------

        index: int. Index



    Returns

    -------

        tuple: (image, target) where target is class_index of the target class.

    """
        if self.load_in_mem:
            img = self.data[index]
            target = self.labels[index]
        else:
            path, target = self.imgs[index]
            img = self.loader(str(path))
            if self.transform is not None:
                img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)
        return img, int(target), index

    def __len__(self):
        return len(self.imgs)

    def __repr__(self):
        fmt_str = "Dataset " + self.__class__.__name__ + "\n"
        fmt_str += "    Number of datapoints: {}\n".format(self.__len__())
        fmt_str += "    Root Location: {}\n".format(self.root)
        tmp = "    Transforms (if any): "
        fmt_str += "{0}{1}\n".format(
            tmp, self.transform.__repr__().replace("\n", "\n" + " " * len(tmp))
        )
        tmp = "    Target Transforms (if any): "
        fmt_str += "{0}{1}".format(
            tmp, self.target_transform.__repr__().replace("\n", "\n" + " " * len(tmp))
        )
        return fmt_str


class ILSVRC_HDF5_feats(data.Dataset):
    """ ILSVRC_HDF5_feats: A dataset to support I/O from an HDF5.



        Parameters

        ----------

            root :str

                Path to the hdf5 file containing images and labels.

            root_feats: str, optional

                Path to the hdf5 file containing the instance features.

            root_nns: str, optional

                Path to the hdf5 file containing the list of nearest neighbors for each instance.

            transform : callable, optional

                A function/transform that  takes in an PIL image and returns a transformed version.

                 E.g, ``transforms.RandomCrop``

            target_transform: callable, optional

                A function/transform that takes in the target and transforms it.

            load_labels: bool, optional

                Return labels for each example.

            load_features: bool, optional

                Return instance features and its neighbors (needed for IC-GAN).

            load_in_mem_images: bool, optional

                Load all images in memory.

            load_in_mem_labels: bool, optional

                Load all labels in memory.

            load_in_mem_feats: bool, optional

                Load all instance features in memory.

            k_nn: int, optional

                Size of the neighborhood obtained with the k-NN algorithm.

            which_nn_balance: str, optional

                Whether to sample an instance or a neighbor class first. By default,

                ``instance_balance`` is used.

                 Using ``nnclass_balance`` allows class balancing to be applied.

            kmeans_file: str, optional

                Path to a file where only the dataset indexes selected with k-means are stored.

                 It reduces the amount of available data to train or test the model.

            n_subsampled_data: int, optional

                If other than -1, that number of data points are randomly selected from the dataset.

                It reduces the amount of available data to train or test the model.

            filter_hd: int, optional

                Only used for COCO-Stuff dataset. If -1, all COCO-Stuff evaluation set is used.

                 If 0, only images with seen class combinations are used.

                 If 1, only images with unseen class combinations are used.

            label_dim: int, optional

                Dimensionality of label embeddings. Useful for the StyleGAN2 backbone code.

            feature_dim: int, optional

                Dimensionality of instance features embeddings. Useful for the StyleGAN2 backbone

                 code.

            feature_augmentation: bool, optional

                Use the instance features of the flipped ground-truth image instances as

                 conditioning, with a 50% probability.

            gpu_knn: bool, optional

                Accelerate k-NN faiss computation with GPUs.

            apply_norm: bool, optional

                Normalize images between [-0.5, 0.5].

            label_onehot: bool, optional

                Return labels as a one hot encoding. Useful for StyleGAN2 backbone code.



        Attributes

        ---------

            root: str

                Path to the hdf5 file containing images and labels.

            root_feats: str

                Path to the hdf5 file containing the instance features.

            root_nns: str

                Path to the hdf5 file containing the list of nearest neighbors for each

                instance.

            transform : callable

                A function/transform that  takes in an PIL image and returns a transformed version.

                E.g, ``transforms.RandomCrop``

            target_transform: callable

                A function/transform that takes in the target and transforms it.

            load_labels: bool

                Return labels for each example.

            load_features: bool

                Return instance features and its neighbors (needed for IC-GAN).

            load_in_mem_images: bool

                Load all images in memory.

            load_in_mem_labels: bool

                Load all labels in memory.

            load_in_mem_feats: bool

                Load all instance features in memory.

            feature_augmentation: bool

                Use the instance features of the flipped ground-truth image instances as conditioning,

                with a 50% probability.

            which_nn_balance: str

                Whether to sample an instance or a neighbor class first. By default,

                ``instance_balance`` is used. Using ``nnclass_balance`` allows class balancing to be

                 applied.

            apply_norm: bool

                Normalize images between [-0.5, 0.5].

            label_onehot: bool

                Return labels as a one hot encoding. Useful for StyleGAN2 backbone code.

            num_imgs: int.

                Number of data points in the dataset.

            data: NumPy array

                Image data, with the shape (num_imgs, w, h, 3), where w: width and h: height.

            labels: NumPy array

                Label data, with the shape (num_imgs, 1).

            feats: NumPy array

                Instance features data, with the shape (num_imgs, 2048).

            sample_nns: list

                List with length ``num_imgs``, that contains a list of the ``k_nn`` neighbor indexes

                 for each instance.

            sample_nn_radius: NumPy array

                Array of size (num_imgs) that stores the distance between each instance and its

                farthest(k-th) neighbor.

            possible_sampling_idxs: list

                List of all effective possible data samples. By default, it is a range(0, num_imgs).

            kmeans_samples: list

                List of indexes for samples selected with k-means algorithm.

            kth_values: NumPy array

                Distances between instances and its k-th neighbor.

        """

    def __init__(

        self,

        root,

        root_feats=None,

        root_nns=None,

        transform=None,

        target_transform=None,

        load_labels=True,

        load_features=True,

        load_in_mem_images=False,

        load_in_mem_labels=False,

        load_in_mem_feats=False,

        k_nn=4,

        which_nn_balance="instance_balance",

        kmeans_file=None,

        n_subsampled_data=-1,

        filter_hd=-1,

        label_dim=0,

        feature_dim=2048,

        feature_augmentation=False,

        gpu_knn=True,

        apply_norm=True,

        label_onehot=False,

        **kwargs

    ):
        self.root = root
        self.root_feats = root_feats
        self.root_nns = root_nns

        self.load_labels = load_labels
        self.load_features = load_features
        self._label_dim = label_dim
        self._feature_dim = feature_dim
        self.label_onehot = label_onehot
        self.feature_augmentation = feature_augmentation

        # Set the transform here
        self.transform = transform
        self.target_transform = target_transform
        # Normalization of images between -0.5 and 0.5 used in BigGAN
        self.apply_norm = apply_norm

        # load the entire dataset into memory?
        self.load_in_mem_images = load_in_mem_images
        self.load_in_mem_labels = load_in_mem_labels
        self.load_in_mem_feats = load_in_mem_feats

        self.which_nn_balance = which_nn_balance

        self.num_imgs = len(h5.File(root, "r")["labels"])

        self.labels, self.feats = None, None
        self.kth_values = None
        # If loading into memory, do so now
        print(
            "Load in mem? Images: %r, Labels: %r, Features: %r."
            % (self.load_in_mem_images, self.load_in_mem_labels, self.load_in_mem_feats)
        )
        if self.load_in_mem_images:
            print("Loading images from %s into memory..." % root)
            with h5.File(root, "r") as f:
                self.data = f["imgs"][:]
        if load_labels and self.load_in_mem_labels:
            print("Loading labels from %s into memory..." % root)
            with h5.File(root, "r") as f:
                self.labels = f["labels"][:]
        if load_features and self.load_in_mem_feats:
            print("Loading features from %s into memory..." % root_feats)
            with h5.File(root_feats, "r") as f:
                self.feats = f["feats"][:]
            # Normalizing features
            print("Normalizing features by their norm")
            self.feats /= np.linalg.norm(self.feats, axis=1, keepdims=True)
            self.feats = torch.from_numpy(self.feats)
            self.feats.share_memory_()

        if load_features:
            if root_nns is None and self.load_in_mem_feats:
                # We compute NNs only if we are loading features and there is no root_nns file.
                self._obtain_nns(k_nn, gpu=gpu_knn, faiss_lib=USE_FAISS)
            elif root_nns is not None:
                # Still loading the NNs indexes!
                print("Loading %s into memory..." % root_nns)
                with h5.File(root_nns, "r") as f:
                    self.sample_nns = f["sample_nns"][:]
                    self.sample_nn_radius = f["sample_nns_radius"][:]
            else:
                raise ValueError(
                    "If no file with pre-computed neighborhoods is provided, "
                    "the features need to be loaded in memory to extract them."
                    " Set the load_in_mem_feats=True."
                )

        # Reducing the number of available samples according to different criteria
        self.possible_sampling_idxs = range(self.num_imgs)
        self.kmeans_samples = None
        if kmeans_file is not None:
            print("Loading file  with just a few centroids (kmeans)... ", kmeans_file)
            self.kmeans_samples = np.load(kmeans_file, allow_pickle=True).item()[
                "center_examples"
            ][:, 0]
            self.possible_sampling_idxs = self.kmeans_samples
        elif n_subsampled_data > -1:
            self.possible_sampling_idxs = np.random.choice(
                np.array(self.possible_sampling_idxs),
                int(n_subsampled_data),
                replace=False,
            )
        elif filter_hd > -1:
            # For COCO_Stuff, we can divide the evaluation set in seen class combinations
            # (filter_hd=0)
            # or unseen class combinations (filter_hd=1)
            allowed_idxs = data_utils.filter_by_hd(filter_hd)
            self.possible_sampling_idxs = allowed_idxs
        # Change the size of the dataset if only a subset of the data is used
        self.possible_sampling_idxs = np.array(self.possible_sampling_idxs)
        self.num_imgs = len(self.possible_sampling_idxs)

        print(
            "All possible conditioning instances are ", len(self.possible_sampling_idxs)
        )

    def __getitem__(self, index):
        """

        Parameters

        ----------

            index: int



        Returns

        -------

            If the dataset loads both features and labels, return 4 elements: neighbor image,

             neighbor class label, instance features and instance radius

            If the dataset loads only features (no labels), return 4 elements: neighbor image,

             instance features, instance radius

            If the dataset loads ony labels (no features), return 2 elements: neighbor image and

            neighbor class label.

            If the dataset does not load features nor labels, return only an image.

        """
        # This only changes the index if possible_sampling_idx contains only a subset of the data
        # (k-means/random sampling or evaluation sets in COCO-Stuff)
        index = self.possible_sampling_idxs[index]
        img = self._get_image(index)
        target = self.get_label(index)
        if self.load_features:
            img_nn, label_nn, feats, radii = self._get_instance_features_and_nn(index)
            img = img_nn
            target = label_nn
        else:
            feats, radii = None, None

        # Apply transform
        img = torch.from_numpy(img)
        if self.apply_norm:
            img = ((img.float() / 255) - 0.5) * 2
        if self.transform is not None:
            img = self.transform(img)
        if self.target_transform is not None:
            target = self.target_transform(target)

        if not self.label_onehot:
            target = int(target)

        if self.load_features and self.load_labels:
            return img, target, feats, radii
        elif self.load_features:
            return img, feats, radii
        elif self.load_labels:
            return img, target
        else:
            return img

    def sample_conditioning_instance_balance(self, batch_size, weights=None):
        """

        It samples a batch size of conditionings.



        First, by first sampling an instance, and then one of the neighbor's class.



        Parameters

        ----------

        batch_size: int

            Number of conditioning to sample.

        weights: NumPy array, optional

            Array of size len(self.possible_sampling_idxs), indicating the weight for each instance,

             used for sampling.



        Returns

        -------

        labels_gen: torch.LongTensor

            Tensor of shape (batch_size, label_dim). Batch of neighbor labels.

        instance_gen: torch.LongTensor

            Tensor of shape (batch_size, label_dim). Batch of instance features.

        """
        # Control instance (center of k-NN) balancing with weights
        # Sampling from p(h)
        if weights is None:
            # np.random.randint is a faster function than np.random.choice.
            # If there is no sampling weights, use this one.
            sel_idxs = np.random.randint(0, len(self.possible_sampling_idxs), size=batch_size)
            sel_idxs = self.possible_sampling_idxs[sel_idxs]
        else:
            sel_idxs = np.random.choice(
                self.possible_sampling_idxs, batch_size, replace=True, p=weights
            )

        # Features from center example
        instance_gen = self.get_instance_features(sel_idxs)
        # Get labels from neighbor
        labels_gen = []
        for idx_ in sel_idxs:
            # Sampling neighbor from p(x_nn, y_nn| h)
            chosen_idx = np.random.choice(self.sample_nns[idx_])
            # Labels from neighbors
            if self.load_labels:
                labels_gen.append(self.get_label(chosen_idx)[np.newaxis, ...])
        if self.load_labels:
            labels_gen = np.concatenate(labels_gen, 0)
            labels_gen = torch.LongTensor(labels_gen)
        else:
            labels_gen = None

        instance_gen = torch.FloatTensor(instance_gen)

        return labels_gen, instance_gen

    def sample_conditioning_nnclass_balance(

        self, batch_size, weights=None, num_classes=1000

    ):
        """

        It samples a batch size of conditionings.



        First, by sampling a class, then an image from this class, and finally an instance feature

        that would have this image as a neighbor in feature space.



        Parameters

        ----------

        batch_size: int

            Number of conditioning to sample.

        weights: NumPy array, optional

            Array of size num_classes, indicating the weight for each instance, used for sampling.

        num_classes: int, optional

            Number of classes in the dataset



        Returns

        -------

        labels_gen: torch.LongTensor

            Tensor of shape (batch_size, label_dim). Batch of neighbor labels.

        instance_gen: torch.LongTensor

            Tensor of shape (batch_size, label_dim). Batch of instance features.

        """
        if weights is not None:
            weights = np.array(weights) / sum(weights)

        # Sampling from p(y)
        chosen_class = np.random.choice(
            range(num_classes), batch_size, replace=True, p=weights
        )
        nn_idxs = []
        for lab_ in chosen_class:
            # Sampling from p(x_nn|y)
            chosen_xnn = np.random.choice((self.labels == lab_).nonzero()[0])
            # Sampling from p(h| x_nn,y)
            nn_idxs.append(np.random.choice(self.sample_nns[chosen_xnn]))

        instance_gen = self.get_instance_features(nn_idxs)

        instance_gen = torch.FloatTensor(instance_gen)
        labels_gen = torch.LongTensor(chosen_class)

        return labels_gen, instance_gen

    def get_label(self, index):
        """Obtain a label as an int or as a one-hot vector."""
        if not self.load_labels:
            if self.label_onehot:
                return np.zeros(self.label_dim, dtype=np.float32).copy()
            else:
                return 0

        if self.load_labels:
            if self.load_in_mem_labels:
                target = self.labels[index]
            else:
                with h5.File(self.root, "r") as f:
                    target = f["labels"][index]
        else:
            target = None
        if self.label_onehot:
            onehot_vec = np.zeros(self.label_dim, dtype=np.float32)
            onehot_vec[target] = 1
            target = onehot_vec.copy()

        return target

    def get_instance_features(self, index):
        """Obtain an instance feature vector."""
        if not self.load_features:
            return np.zeros(self.feature_dim, dtype=np.float32).copy()

        if self.load_in_mem_feats:
            feat = self.feats[index].clone().float()  # .astype('float')
        else:
            with h5.File(self.root_feats, "r") as f:
                if isinstance(index, (int, np.int64)):
                    hflip = np.random.randint(2) == 1
                    if self.feature_augmentation and hflip:
                        feat = f["feats_hflip"][index].astype("float")
                    else:
                        feat = f["feats"][index].astype("float")
                    feat /= np.linalg.norm(feat, keepdims=True)
                else:
                    feat = []
                    for sl_idx in index:
                        hflip = np.random.randint(2) == 1
                        if self.feature_augmentation and hflip:
                            feat.append(
                                f["feats_hflip"][sl_idx].astype("float")[
                                    np.newaxis, ...
                                ]
                            )
                        else:
                            feat.append(
                                f["feats"][sl_idx].astype("float")[np.newaxis, ...]
                            )
                    feat = np.concatenate(feat)
                    feat /= np.linalg.norm(feat, axis=1, keepdims=True)
        return feat

    @property
    def resolution(self):
        with h5.File(self.root, "r") as f:
            sze = list(f["imgs"][0].shape)
        return sze[1]

    @property
    def label_dim(self):
        return self._label_dim

    @property
    def feature_dim(self):
        return self._feature_dim

    def _obtain_nns(self, k_nn=20, faiss_lib=True, feat_sz=2048, gpu=True):
        """

        It obtains the neighborhoods for all instances using the k-NN algorithm.



        Parameters

        ----------

        k_nn: int, optional

            Number of neighbors (k).

        faiss_lib: bool, optional

           If True, use the faiss library implementation of k-NN. If not, use the slower

            implementation of sklearn.

        feat_sz: int, optional

            Feature dimensionality.

        gpu: bool, optional

            If True, leverage GPU resources to speed up computation with the faiss library.



        """
        # K_nn computation takes into account the input sample as the first NN,
        # so we add an extra NN to later remove the input sample.
        k_nn += 1

        self.sample_nns = [[] for _ in range(self.num_imgs)]
        self.sample_nn_radius = np.zeros(self.num_imgs, dtype=float)

        if faiss_lib:
            cpu_index = faiss.IndexFlatL2(feat_sz)
            if gpu:
                gpu_index = faiss.index_cpu_to_all_gpus(cpu_index)  # build the index
                index = gpu_index
            else:
                index = cpu_index
            index.add(self.feats.float().numpy().astype("float32"))
            kth_values, kth_values_arg = index.search(
                self.feats.numpy().astype("float32"), k_nn
            )
            self.kth_values = np.sqrt(kth_values)
            knn_radii = np.sqrt(kth_values[:, -1])

        else:
            dists = sklearn.metrics.pairwise_distances(
                self.feats, self.feats, metric="euclidean", n_jobs=-1
            )
            print("Computed distances.")
            knn_radii, kth_values_arg = self._get_kth_value_accurate(dists, k_nn)
        for i_sample in range(self.num_imgs):
            knns = kth_values_arg[i_sample]
            # Discarding the input sample, also seen as the 0-NN.
            knns = np.delete(knns, np.where(knns == i_sample)[0], 0)
            self.sample_nns[i_sample] = knns.tolist()
            self.sample_nn_radius[i_sample] = knn_radii[i_sample]
        print("Computed NNs.")

    @staticmethod
    def _get_kth_value_accurate(distances, k, axis=-1):
        """ Find k nearest neighbor

        Parameters

        ---------

        distances: NumPy array

            Matrix of size (M, M) of unordered distances.

        k: int

            Neighborhood size

        axis: int



        Returns

        -------

        kth values: NumPy array

            Distances of the k-th nearest neighbor along the designated axis.

        indices: NumPy array

            Array positions in the input matrix indicating all neighbors up until the k-th.



        """
        indices = np.argpartition(distances, k - 1, axis=axis)[..., :k]
        k_smallests = np.take_along_axis(distances, indices, axis=axis)
        kth_values = k_smallests.max(axis=axis)
        return kth_values, indices

    def _get_image(self, index):
        """Obtain an image array."""
        if self.load_in_mem_images:
            img = self.data[index]
        else:
            with h5.File(self.root, "r") as f:
                img = f["imgs"][index]
        return img

    def _get_instance_features_and_nn(self, index):
        """ Builds a quadruplet of neighbor image, its label, conditioning instance features, radii.



        Returns

        ----------

        img_nn: NumPy array

            Neighbor image.

        label_nn: NumPy array

            Neighbor label.

        feats: NumPy array

            Conditioning instance features.

        radii: float

            Distance between conditioning instance and farthest (k-th) neighbor.

        """
        # Standard sampling: Obtain a feature vector for the input index,
        # and image/class label for a neighbor.
        if self.which_nn_balance == "instance_balance":
            idx_h = index
            # If we are only using a selected number of instances (kmeans), re-choose the index
            if self.kmeans_samples is not None:
                index = np.random.choice(self.kmeans_samples)
            idx_nn = np.random.choice(self.sample_nns[index])

        # Reverse sampling, used when we want to perform class balancing (long-tail setup).
        # In class-conditional IC-GAN, the classes are taken from the neighbors.
        # The reverse sampling allows us to control the class balancing by using extra weights
        # in the DataLoader.
        elif self.which_nn_balance == "nnclass_balance":
            idx_h = np.random.choice(self.sample_nns[index])
            idx_nn = index

        # Index selects the instance feature vector
        radii = self.sample_nn_radius[idx_h]

        img_nn = self._get_image(idx_nn)
        label_nn = self.get_label(idx_nn)
        feats = self.get_instance_features(idx_h)

        return img_nn, label_nn, feats, radii

    def __len__(self):
        return self.num_imgs