File size: 19,430 Bytes
a00ee36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# All contributions by NVIDIA CORPORATION:
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import functools
import io
import json
import os
import pickle
import sys
import tarfile
import gzip
import zipfile
from pathlib import Path
from typing import Callable, Optional, Tuple, Union
import click
import numpy as np
import PIL.Image
from tqdm import tqdm
import h5py as h5
# ----------------------------------------------------------------------------
def error(msg):
print("Error: " + msg)
sys.exit(1)
# ----------------------------------------------------------------------------
def maybe_min(a: int, b: Optional[int]) -> int:
if b is not None:
return min(a, b)
return a
# ----------------------------------------------------------------------------
def file_ext(name: Union[str, Path]) -> str:
return str(name).split(".")[-1]
# ----------------------------------------------------------------------------
def is_image_ext(fname: Union[str, Path]) -> bool:
ext = file_ext(fname).lower()
return f".{ext}" in PIL.Image.EXTENSION # type: ignore
# ----------------------------------------------------------------------------
def open_image_folder(source_dir, *, max_images: Optional[int]):
input_images = [
str(f)
for f in sorted(Path(source_dir).rglob("*"))
if is_image_ext(f) and os.path.isfile(f)
]
# Load labels.
labels = {}
meta_fname = os.path.join(source_dir, "dataset.json")
if os.path.isfile(meta_fname):
with open(meta_fname, "r") as file:
labels = json.load(file)["labels"]
if labels is not None:
labels = {x[0]: x[1] for x in labels}
else:
labels = {}
max_idx = maybe_min(len(input_images), max_images)
def iterate_images():
for idx, fname in enumerate(input_images):
arch_fname = os.path.relpath(fname, source_dir)
arch_fname = arch_fname.replace("\\", "/")
img = np.array(PIL.Image.open(fname).convert("RGB"))
yield dict(img=img, label=labels.get(arch_fname))
if idx >= max_idx - 1:
break
return max_idx, iterate_images()
# ----------------------------------------------------------------------------
def open_image_zip(source, *, max_images: Optional[int]):
with zipfile.ZipFile(source, mode="r") as z:
input_images = [str(f) for f in sorted(z.namelist()) if is_image_ext(f)]
# Load labels.
labels = {}
if "dataset.json" in z.namelist():
with z.open("dataset.json", "r") as file:
labels = json.load(file)["labels"]
if labels is not None:
labels = {x[0]: x[1] for x in labels}
else:
labels = {}
max_idx = maybe_min(len(input_images), max_images)
def iterate_images():
with zipfile.ZipFile(source, mode="r") as z:
for idx, fname in enumerate(input_images):
with z.open(fname, "r") as file:
img = PIL.Image.open(file) # type: ignore
img = np.array(img)
yield dict(img=img, label=labels.get(fname))
if idx >= max_idx - 1:
break
return max_idx, iterate_images()
# ----------------------------------------------------------------------------
def open_image_hdf5(source, *, max_images: Optional[int]):
with h5.File(source, "r") as f:
all_imgs = f["imgs"][:]
all_imgs = all_imgs.transpose(0, 2, 3, 1)
all_labels = f["labels"][:]
all_labels = all_labels.astype("int32")
max_idx = len(all_imgs)
print("max images is ", max_idx)
def iterate_images():
for idx, img in enumerate(all_imgs):
yield dict(img=img, label=all_labels[idx])
if idx >= max_idx - 1:
break
return max_idx, iterate_images()
# ----------------------------------------------------------------------------
def open_lmdb(lmdb_dir: str, *, max_images: Optional[int]):
import cv2 # pip install opencv-python
import lmdb # pip install lmdb # pylint: disable=import-error
with lmdb.open(lmdb_dir, readonly=True, lock=False).begin(write=False) as txn:
max_idx = maybe_min(txn.stat()["entries"], max_images)
def iterate_images():
with lmdb.open(lmdb_dir, readonly=True, lock=False).begin(write=False) as txn:
for idx, (_key, value) in enumerate(txn.cursor()):
try:
try:
img = cv2.imdecode(np.frombuffer(value, dtype=np.uint8), 1)
if img is None:
raise IOError("cv2.imdecode failed")
img = img[:, :, ::-1] # BGR => RGB
except IOError:
img = np.array(PIL.Image.open(io.BytesIO(value)))
yield dict(img=img, label=None)
if idx >= max_idx - 1:
break
except:
print(sys.exc_info()[1])
return max_idx, iterate_images()
# ----------------------------------------------------------------------------
def open_cifar10(tarball: str, *, max_images: Optional[int]):
images = []
labels = []
with tarfile.open(tarball, "r:gz") as tar:
for batch in range(1, 6):
member = tar.getmember(f"cifar-10-batches-py/data_batch_{batch}")
with tar.extractfile(member) as file:
data = pickle.load(file, encoding="latin1")
images.append(data["data"].reshape(-1, 3, 32, 32))
labels.append(data["labels"])
images = np.concatenate(images)
labels = np.concatenate(labels)
images = images.transpose([0, 2, 3, 1]) # NCHW -> NHWC
assert images.shape == (50000, 32, 32, 3) and images.dtype == np.uint8
assert labels.shape == (50000,) and labels.dtype in [np.int32, np.int64]
assert np.min(images) == 0 and np.max(images) == 255
assert np.min(labels) == 0 and np.max(labels) == 9
max_idx = maybe_min(len(images), max_images)
def iterate_images():
for idx, img in enumerate(images):
yield dict(img=img, label=int(labels[idx]))
if idx >= max_idx - 1:
break
return max_idx, iterate_images()
# ----------------------------------------------------------------------------
def open_mnist(images_gz: str, *, max_images: Optional[int]):
labels_gz = images_gz.replace("-images-idx3-ubyte.gz", "-labels-idx1-ubyte.gz")
assert labels_gz != images_gz
images = []
labels = []
with gzip.open(images_gz, "rb") as f:
images = np.frombuffer(f.read(), np.uint8, offset=16)
with gzip.open(labels_gz, "rb") as f:
labels = np.frombuffer(f.read(), np.uint8, offset=8)
images = images.reshape(-1, 28, 28)
images = np.pad(images, [(0, 0), (2, 2), (2, 2)], "constant", constant_values=0)
assert images.shape == (60000, 32, 32) and images.dtype == np.uint8
assert labels.shape == (60000,) and labels.dtype == np.uint8
assert np.min(images) == 0 and np.max(images) == 255
assert np.min(labels) == 0 and np.max(labels) == 9
max_idx = maybe_min(len(images), max_images)
def iterate_images():
for idx, img in enumerate(images):
yield dict(img=img, label=int(labels[idx]))
if idx >= max_idx - 1:
break
return max_idx, iterate_images()
# ----------------------------------------------------------------------------
def make_transform(
transform: Optional[str],
output_width: Optional[int],
output_height: Optional[int],
resize_filter: str,
) -> Callable[[np.ndarray], Optional[np.ndarray]]:
resample = {"box": PIL.Image.BOX, "lanczos": PIL.Image.LANCZOS}[resize_filter]
def scale(width, height, img):
w = img.shape[1]
h = img.shape[0]
if width == w and height == h:
return img
img = PIL.Image.fromarray(img)
ww = width if width is not None else w
hh = height if height is not None else h
img = img.resize((ww, hh), resample)
return np.array(img)
def center_crop(width, height, img):
crop = np.min(img.shape[:2])
img = img[
(img.shape[0] - crop) // 2 : (img.shape[0] + crop) // 2,
(img.shape[1] - crop) // 2 : (img.shape[1] + crop) // 2,
]
img = PIL.Image.fromarray(img, "RGB")
img = img.resize((width, height), resample)
return np.array(img)
def center_crop_wide(width, height, img):
ch = int(np.round(width * img.shape[0] / img.shape[1]))
if img.shape[1] < width or ch < height:
return None
img = img[(img.shape[0] - ch) // 2 : (img.shape[0] + ch) // 2]
img = PIL.Image.fromarray(img, "RGB")
img = img.resize((width, height), resample)
img = np.array(img)
canvas = np.zeros([width, width, 3], dtype=np.uint8)
canvas[(width - height) // 2 : (width + height) // 2, :] = img
return canvas
if transform is None:
return functools.partial(scale, output_width, output_height)
if transform == "center-crop":
if (output_width is None) or (output_height is None):
error(
"must specify --width and --height when using "
+ transform
+ "transform"
)
return functools.partial(center_crop, output_width, output_height)
if transform == "center-crop-wide":
if (output_width is None) or (output_height is None):
error(
"must specify --width and --height when using "
+ transform
+ " transform"
)
return functools.partial(center_crop_wide, output_width, output_height)
assert False, "unknown transform"
# ----------------------------------------------------------------------------
def open_dataset(source, *, max_images: Optional[int]):
if os.path.isdir(source):
if source.rstrip("/").endswith("_lmdb"):
return open_lmdb(source, max_images=max_images)
else:
return open_image_folder(source, max_images=max_images)
elif os.path.isfile(source):
if source.rstrip("/").endswith(".hdf5"):
return open_image_hdf5(source, max_images=max_images)
elif os.path.basename(source) == "cifar-10-python.tar.gz":
return open_cifar10(source, max_images=max_images)
elif os.path.basename(source) == "train-images-idx3-ubyte.gz":
return open_mnist(source, max_images=max_images)
elif file_ext(source) == "zip":
return open_image_zip(source, max_images=max_images)
else:
assert False, "unknown archive type"
else:
error(f"Missing input file or directory: {source}")
# ----------------------------------------------------------------------------
def open_dest(
dest: str
) -> Tuple[str, Callable[[str, Union[bytes, str]], None], Callable[[], None]]:
dest_ext = file_ext(dest)
if dest_ext == "zip":
if os.path.dirname(dest) != "":
os.makedirs(os.path.dirname(dest), exist_ok=True)
zf = zipfile.ZipFile(file=dest, mode="w", compression=zipfile.ZIP_STORED)
def zip_write_bytes(fname: str, data: Union[bytes, str]):
zf.writestr(fname, data)
return "", zip_write_bytes, zf.close
else:
# If the output folder already exists, check that is is
# empty.
#
# Note: creating the output directory is not strictly
# necessary as folder_write_bytes() also mkdirs, but it's better
# to give an error message earlier in case the dest folder
# somehow cannot be created.
if os.path.isdir(dest) and len(os.listdir(dest)) != 0:
error("--dest folder must be empty")
os.makedirs(dest, exist_ok=True)
def folder_write_bytes(fname: str, data: Union[bytes, str]):
os.makedirs(os.path.dirname(fname), exist_ok=True)
with open(fname, "wb") as fout:
if isinstance(data, str):
data = data.encode("utf8")
fout.write(data)
return dest, folder_write_bytes, lambda: None
# ----------------------------------------------------------------------------
@click.command()
@click.pass_context
@click.option(
"--source",
help="Directory or archive name for input dataset",
required=True,
metavar="PATH",
)
@click.option(
"--dest",
help="Output directory or archive name for output dataset",
required=True,
metavar="PATH",
)
@click.option(
"--max-images", help="Output only up to `max-images` images", type=int, default=None
)
@click.option(
"--resize-filter",
help="Filter to use when resizing images for output resolution",
type=click.Choice(["box", "lanczos"]),
default="lanczos",
show_default=True,
)
@click.option(
"--transform",
help="Input crop/resize mode",
type=click.Choice(["center-crop", "center-crop-wide"]),
)
@click.option("--width", help="Output width", type=int)
@click.option("--height", help="Output height", type=int)
def convert_dataset(
ctx: click.Context,
source: str,
dest: str,
max_images: Optional[int],
transform: Optional[str],
resize_filter: str,
width: Optional[int],
height: Optional[int],
):
"""Convert an image dataset into a dataset archive usable with StyleGAN2 ADA PyTorch.
The input dataset format is guessed from the --source argument:
\b
--source *_lmdb/ Load LSUN dataset
--source cifar-10-python.tar.gz Load CIFAR-10 dataset
--source train-images-idx3-ubyte.gz Load MNIST dataset
--source path/ Recursively load all images from path/
--source dataset.zip Recursively load all images from dataset.zip
Specifying the output format and path:
\b
--dest /path/to/dir Save output files under /path/to/dir
--dest /path/to/dataset.zip Save output files into /path/to/dataset.zip
The output dataset format can be either an image folder or an uncompressed zip archive.
Zip archives makes it easier to move datasets around file servers and clusters, and may
offer better training performance on network file systems.
Images within the dataset archive will be stored as uncompressed PNG.
Uncompresed PNGs can be efficiently decoded in the training loop.
Class labels are stored in a file called 'dataset.json' that is stored at the
dataset root folder. This file has the following structure:
\b
{
"labels": [
["00000/img00000000.png",6],
["00000/img00000001.png",9],
... repeated for every image in the datase
["00049/img00049999.png",1]
]
}
If the 'dataset.json' file cannot be found, the dataset is interpreted as
not containing class labels.
Image scale/crop and resolution requirements:
Output images must be square-shaped and they must all have the same power-of-two
dimensions.
To scale arbitrary input image size to a specific width and height, use the
--width and --height options. Output resolution will be either the original
input resolution (if --width/--height was not specified) or the one specified with
--width/height.
Use the --transform=center-crop or --transform=center-crop-wide options to apply a
center crop transform on the input image. These options should be used with the
--width and --height options. For example:
\b
python dataset_tool.py --source LSUN/raw/cat_lmdb --dest /tmp/lsun_cat \\
--transform=center-crop-wide --width 512 --height=384
"""
PIL.Image.init() # type: ignore
if dest == "":
ctx.fail("--dest output filename or directory must not be an empty string")
num_files, input_iter = open_dataset(source, max_images=max_images)
archive_root_dir, save_bytes, close_dest = open_dest(dest)
transform_image = make_transform(transform, width, height, resize_filter)
dataset_attrs = None
labels = []
for idx, image in tqdm(enumerate(input_iter), total=num_files):
idx_str = f"{idx:08d}"
archive_fname = f"{idx_str[:5]}/img{idx_str}.png"
# Apply crop and resize.
img = transform_image(image["img"])
# Transform may drop images.
if img is None:
continue
# Error check to require uniform image attributes across
# the whole dataset.
channels = img.shape[2] if img.ndim == 3 else 1
cur_image_attrs = {
"width": img.shape[1],
"height": img.shape[0],
"channels": channels,
}
if dataset_attrs is None:
dataset_attrs = cur_image_attrs
width = dataset_attrs["width"]
height = dataset_attrs["height"]
if width != height:
error(
f"Image dimensions after scale and crop are required to be square. Got {width}x{height}"
)
if dataset_attrs["channels"] not in [1, 3]:
error("Input images must be stored as RGB or grayscale")
if width != 2 ** int(np.floor(np.log2(width))):
error(
"Image width/height after scale and crop are required to be power-of-two"
)
elif dataset_attrs != cur_image_attrs:
err = [
f" dataset {k}/cur image {k}: {dataset_attrs[k]}/{cur_image_attrs[k]}"
for k in dataset_attrs.keys()
]
error(
f"Image {archive_fname} attributes must be equal across all images of the dataset. Got:\n"
+ "\n".join(err)
)
# Save the image as an uncompressed PNG.
img = PIL.Image.fromarray(img, {1: "L", 3: "RGB"}[channels])
image_bits = io.BytesIO()
img.save(image_bits, format="png", compress_level=0, optimize=False)
save_bytes(
os.path.join(archive_root_dir, archive_fname), image_bits.getbuffer()
)
labels.append(
[archive_fname, image["label"]] if image["label"] is not None else None
)
metadata = {"labels": labels if all(x is not None for x in labels) else None}
save_bytes(os.path.join(archive_root_dir, "dataset.json"), json.dumps(metadata))
close_dest()
# ----------------------------------------------------------------------------
if __name__ == "__main__":
convert_dataset() # pylint: disable=no-value-for-parameter
|