File size: 11,731 Bytes
a00ee36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
# All contributions by Andy Brock:
# Copyright (c) 2019 Andy Brock

# MIT License
""" train_fns.py
Functions for the main loop of training different conditional image models
"""
import torch

import utils
import losses


# Dummy training function for debugging
def dummy_training_function():
    def train(x, y):
        return {}

    return train


def GAN_training_function(
    G,
    D,
    GD,
    ema,
    state_dict,
    config,
    sample_conditionings,
    embedded_optimizers=True,
    device="cuda",
    batch_size=0,
):
    def train(x, y=None, features=None):
        if embedded_optimizers:
            G.optim.zero_grad()
            D.optim.zero_grad()
        else:
            GD.optimizer_D.zero_grad()
            GD.optimizer_G.zero_grad()
        # How many chunks to split x and y into?
        x = torch.split(x, batch_size)
        if y is not None:
            y = torch.split(y, batch_size)
        if features is not None:
            f_ = torch.split(features, batch_size)
        else:
            f_ = None
        counter = 0

        # Optionally toggle D and G's "require_grad"
        if config["toggle_grads"]:
            utils.toggle_grad(D, True)
            utils.toggle_grad(G, False)

        for step_index in range(config["num_D_steps"]):
            # If accumulating gradients, loop multiple times before an optimizer step
            if embedded_optimizers:
                D.optim.zero_grad()
            else:
                GD.optimizer_D.zero_grad()
            for accumulation_index in range(config["num_D_accumulations"]):
                # Sample conditioning for G
                sampled_cond = sample_conditionings()
                labels_g, f_g = None, None
                if features is not None and y is not None:
                    z_, labels_g, f_g = sampled_cond
                elif y is not None:
                    z_, labels_g = sampled_cond
                elif features is not None:
                    z_, f_g = sampled_cond
                # Tensors to device
                if labels_g is not None:
                    labels_g = (
                        labels_g[:batch_size].to(device, non_blocking=True).long()
                    )
                if f_g is not None:
                    f_g = f_g[:batch_size].to(device, non_blocking=True)
                z_ = z_[:batch_size].to(device, non_blocking=True)
                # Obtain discriminator scores
                D_fake, D_real = GD(
                    z_,
                    labels_g,
                    f_g,
                    x[counter],
                    y[counter] if y is not None else None,
                    f_[counter] if f_ is not None else None,
                    train_G=False,
                    split_D=config["split_D"],
                    policy=config["DiffAugment"],
                    DA=config["DA"],
                )

                # Compute components of D's loss, average them, and divide by
                # the number of gradient accumulations
                D_loss_real, D_loss_fake = losses.discriminator_loss(D_fake, D_real)
                D_loss = (D_loss_real + D_loss_fake) / float(
                    config["num_D_accumulations"]
                )
                D_loss.backward()
                counter += 1

            # Optionally apply ortho reg in D
            if config["D_ortho"] > 0.0:
                # Debug print to indicate we're using ortho reg in D.
                print("using modified ortho reg in D")
                utils.ortho(D, config["D_ortho"])

            if embedded_optimizers:
                D.optim.step()
            else:
                GD.optimizer_D.step()

        # Optionally toggle "requires_grad"
        if config["toggle_grads"]:
            utils.toggle_grad(D, False)
            utils.toggle_grad(G, True)

        # Zero G's gradients by default before training G, for safety
        if embedded_optimizers:
            G.optim.zero_grad()
        else:
            GD.optimizer_G.zero_grad()

        counter = 0
        # If accumulating gradients, loop multiple times
        for accumulation_index in range(config["num_G_accumulations"]):
            # Sample conditioning for G
            sampled_cond = sample_conditionings()
            labels_g, f_g = None, None
            if features is not None and y is not None:
                z_, labels_g, f_g = sampled_cond
            elif y is not None:
                z_, labels_g = sampled_cond
            elif features is not None:
                z_, f_g = sampled_cond
            # Tensors to device
            if labels_g is not None:
                labels_g = labels_g.to(device, non_blocking=True).long()
            if f_g is not None:
                f_g = f_g.to(device, non_blocking=True)
            z_ = z_.to(device, non_blocking=True)
            # Obtain discriminator scores
            D_fake = GD(
                z_,
                labels_g,
                f_g,
                train_G=True,
                split_D=config["split_D"],
                policy=config["DiffAugment"],
                DA=config["DA"],
            )
            G_loss = losses.generator_loss(D_fake) / float(
                config["num_G_accumulations"]
            )
            G_loss.backward()
            counter += 1

        # Optionally apply modified ortho reg in G
        if config["G_ortho"] > 0.0:
            print(
                "using modified ortho reg in G"
            )  # Debug print to indicate we're using ortho reg in G
            # Don't ortho reg shared, it makes no sense. Really we should blacklist any embeddings for this
            utils.ortho(
                G,
                config["G_ortho"],
                blacklist=[param for param in G.shared.parameters()],
            )
        if embedded_optimizers:
            G.optim.step()
        else:
            GD.optimizer_G.step()

        # If we have an ema, update it, regardless of if we test with it or not
        if config["ema"]:
            ema.update(state_dict["itr"])

        out = {
            "G_loss": float(G_loss.item()),
            "D_loss_real": float(D_loss_real.item()),
            "D_loss_fake": float(D_loss_fake.item()),
        }
        # Return G's loss and the components of D's loss.
        return out

    return train


def save_weights(
    G,
    D,
    G_ema,
    state_dict,
    config,
    experiment_name,
    embedded_optimizers=True,
    G_optim=None,
    D_optim=None,
):
    utils.save_weights(
        G,
        D,
        state_dict,
        config["weights_root"],
        experiment_name,
        None,
        G_ema if config["ema"] else None,
        embedded_optimizers=embedded_optimizers,
        G_optim=G_optim,
        D_optim=D_optim,
    )
    # Save an additional copy to mitigate accidental corruption if process
    # is killed during a save (it's happened to me before -.-)
    if config["num_save_copies"] > 0:
        utils.save_weights(
            G,
            D,
            state_dict,
            config["weights_root"],
            experiment_name,
            "copy%d" % state_dict["save_num"],
            G_ema if config["ema"] else None,
            embedded_optimizers=embedded_optimizers,
            G_optim=G_optim,
            D_optim=D_optim,
        )
        state_dict["save_num"] = (state_dict["save_num"] + 1) % config[
            "num_save_copies"
        ]


""" This function takes in the model, saves the weights (multiple copies if 
    requested), and prepares sample sheets: one consisting of samples given
    a fixed noise seed (to show how the model evolves throughout training),
    a set of full conditional sample sheets, and a set of interp sheets. """


def save_and_sample(
    G, D, G_ema, z_, y_, fixed_z, fixed_y, state_dict, config, experiment_name
):
    utils.save_weights(
        G,
        D,
        state_dict,
        config["weights_root"],
        experiment_name,
        None,
        G_ema if config["ema"] else None,
    )
    # Save an additional copy to mitigate accidental corruption if process
    # is killed during a save (it's happened to me before -.-)
    if config["num_save_copies"] > 0:
        utils.save_weights(
            G,
            D,
            state_dict,
            config["weights_root"],
            experiment_name,
            "copy%d" % state_dict["save_num"],
            G_ema if config["ema"] else None,
        )
        state_dict["save_num"] = (state_dict["save_num"] + 1) % config[
            "num_save_copies"
        ]

    # Accumulate standing statistics?
    if config["accumulate_stats"]:
        utils.accumulate_standing_stats(
            G_ema if config["ema"] and config["use_ema"] else G,
            z_,
            y_,
            config["n_classes"],
            config["num_standing_accumulations"],
        )


""" This function runs the inception metrics code, checks if the results
    are an improvement over the previous best (either in IS or FID, 
    user-specified), logs the results, and saves a best_ copy if it's an 
    improvement. """


def test(
    G,
    D,
    G_ema,
    z_,
    y_,
    state_dict,
    config,
    sample,
    get_inception_metrics,
    experiment_name,
    test_log,
    loader=None,
    embedded_optimizers=True,
    G_optim=None,
    D_optim=None,
    rank=0,
):
    print("Gathering inception metrics...")
    if config["accumulate_stats"]:
        utils.accumulate_standing_stats(
            G_ema if config["ema"] and config["use_ema"] else G,
            z_,
            y_,
            config["n_classes"],
            config["num_standing_accumulations"],
        )
    if loader is not None:
        IS_mean, IS_std, FID, stratified_FID, prdc_metrics = get_inception_metrics(
            sample, config["num_inception_images"], num_splits=10, loader_ref=loader
        )
    else:
        IS_mean, IS_std, FID, stratified_FID = get_inception_metrics(
            sample, config["num_inception_images"], num_splits=10
        )
    print(
        "Itr %d: PYTORCH UNOFFICIAL Inception Score is %3.3f +/- %3.3f, PYTORCH UNOFFICIAL FID is %5.4f"
        % (state_dict["itr"], IS_mean, IS_std, FID)
    )
    # If improved over previous best metric, save approrpiate copy
    if rank == 0:
        if (config["which_best"] == "IS" and IS_mean > state_dict["best_IS"]) or (
            config["which_best"] == "FID" and FID < state_dict["best_FID"]
        ):
            print(
                "%s improved over previous best, saving checkpoint..."
                % config["which_best"]
            )
            utils.save_weights(
                G,
                D,
                state_dict,
                config["weights_root"],
                experiment_name,
                "best%d" % state_dict["save_best_num"],
                G_ema if config["ema"] else None,
                embedded_optimizers=embedded_optimizers,
                G_optim=G_optim,
                D_optim=D_optim,
            )
            state_dict["save_best_num"] = (state_dict["save_best_num"] + 1) % config[
                "num_best_copies"
            ]
        state_dict["best_IS"] = max(state_dict["best_IS"], IS_mean)
        state_dict["best_FID"] = min(state_dict["best_FID"], FID)
        # Log results to file
        test_log.log(
            itr=int(state_dict["itr"]),
            IS_mean=float(IS_mean),
            IS_std=float(IS_std),
            FID=float(FID),
        )
    return IS_mean, FID