Edit model card


FastSpeech 2 text-to-speech model from fairseq S^2 (paper/code):

  • English
  • 200 male/female voices (random speaker when using the widget)
  • Trained on Common Voice v4


from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
import IPython.display as ipd

models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
    arg_overrides={"vocoder": "hifigan", "fp16": False}
model = models[0]
TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
generator = task.build_generator(model, cfg)

text = "Hello, this is a test run."

sample = TTSHubInterface.get_model_input(task, text)
wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample)

ipd.Audio(wav, rate=rate)

See also fairseq S^2 example.


    title = "fairseq S{\^{}}2: A Scalable and Integrable Speech Synthesis Toolkit",
    author = "Wang, Changhan  and
      Hsu, Wei-Ning  and
      Adi, Yossi  and
      Polyak, Adam  and
      Lee, Ann  and
      Chen, Peng-Jen  and
      Gu, Jiatao  and
      Pino, Juan",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-demo.17",
    doi = "10.18653/v1/2021.emnlp-demo.17",
    pages = "143--152",
Downloads last month
Hosted inference API
This model can be loaded on the Inference API on-demand.

Dataset used to train facebook/fastspeech2-en-200_speaker-cv4

Spaces using facebook/fastspeech2-en-200_speaker-cv4 2