Edit model card

crisis_sentiment_roberta

This model is a fine-tuned version of finiteautomata/bertweet-base-sentiment-analysis on an unknown dataset. It achieves the following results on the testing set:

  • Accuracy: 0.83
  • Macro accuracy: 0.76
  • Weighted accuracy: 0.83

Model description

  1. Negative
  2. Positive
  3. Neutral

Sentiment classification using 9,300 tweets of the Flint Water Crisis

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4781 1.0 349 0.4452 0.8366
0.2074 2.0 698 0.5010 0.8237
0.047 3.0 1047 0.5772 0.8199
0.0114 4.0 1396 0.7793 0.8226
0.007 5.0 1745 0.8584 0.8188
0.0144 6.0 2094 0.9517 0.8070
0.0017 7.0 2443 1.0054 0.8231
0.0013 8.0 2792 1.1297 0.8172
0.0008 9.0 3141 1.1622 0.8263
0.001 10.0 3490 1.2313 0.8204
0.0006 11.0 3839 1.2360 0.8220
0.0007 12.0 4188 1.2687 0.8161
0.0004 13.0 4537 1.2940 0.8204
0.0451 14.0 4886 1.3163 0.8194
0.0004 15.0 5235 1.2991 0.8242

Framework versions

  • Transformers 4.23.0.dev0
  • Pytorch 1.13.0.dev20220917+cu117
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
22
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.