Configuration Parsing
Warning:
In UNKNOWN_FILENAME: "diffusers._class_name" must be a string
# !pip install diffusers
from diffusers import DiffusionPipeline
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_id = "eurecom-ds/scoresdeve-ema-celeba-hq-mask-64"
# load model and scheduler
pipe = DiffusionPipeline.from_pretrained(model_id, trust_remote_code=True)
pipe.to(device)
# run pipeline in inference (sample random noise and denoise)
generator = torch.Generator(device=device).manual_seed(46)
image = pipe(
generator=generator,
batch_size=1,
num_inference_steps=1000
).images
# save image
image[0].save("sde_ve_generated_image.png")
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The HF Inference API does not support unconditional-image-generation models for diffusers library.