Edit model card

FastSpeech2Conformer

FastSpeech2Conformer is a non-autoregressive text-to-speech (TTS) model that combines the strengths of FastSpeech2 and the conformer architecture to generate high-quality speech from text quickly and efficiently.

Model Description

The FastSpeech2Conformer model was proposed with the paper Recent Developments On Espnet Toolkit Boosted By Conformer by Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang. It was first released in this repository. The license used is Apache 2.0.

FastSpeech2 is a non-autoregressive TTS model, which means it can generate speech significantly faster than autoregressive models. It addresses some of the limitations of its predecessor, FastSpeech, by directly training the model with ground-truth targets instead of the simplified output from a teacher model. It also introduces more variation information of speech (e.g., pitch, energy, and more accurate duration) as conditional inputs. Furthermore, the conformer (convolutional transformer) architecture makes use of convolutions inside the transformer blocks to capture local speech patterns, while the attention layer is able to capture relationships in the input that are farther away.

  • Developed by: Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang.
  • Shared by: Connor Henderson
  • Model type: text-to-speech
  • Language(s) (NLP): [More Information Needed]
  • License: Apache 2.0
  • Finetuned from model [optional]: [More Information Needed]

Model Sources [optional]

πŸ€— Transformers Usage

You can run FastSpeech2Conformer locally with the πŸ€— Transformers library.

  1. First install the πŸ€— Transformers library, g2p-en:
pip install --upgrade pip
pip install --upgrade transformers g2p-en
  1. Run inference via the Transformers modelling code with the model and hifigan separately

from transformers import FastSpeech2ConformerTokenizer, FastSpeech2ConformerModel, FastSpeech2ConformerHifiGan
import soundfile as sf

tokenizer = FastSpeech2ConformerTokenizer.from_pretrained("espnet/fastspeech2_conformer")
inputs = tokenizer("Hello, my dog is cute.", return_tensors="pt")
input_ids = inputs["input_ids"]

model = FastSpeech2ConformerModel.from_pretrained("espnet/fastspeech2_conformer")
output_dict = model(input_ids, return_dict=True)
spectrogram = output_dict["spectrogram"]

hifigan = FastSpeech2ConformerHifiGan.from_pretrained("espnet/fastspeech2_conformer_hifigan")
waveform = hifigan(spectrogram)

sf.write("speech.wav", waveform.squeeze().detach().numpy(), samplerate=22050)
  1. Run inference via the Transformers modelling code with the model and hifigan combined
from transformers import FastSpeech2ConformerTokenizer, FastSpeech2ConformerWithHifiGan
import soundfile as sf

tokenizer = FastSpeech2ConformerTokenizer.from_pretrained("espnet/fastspeech2_conformer")
inputs = tokenizer("Hello, my dog is cute.", return_tensors="pt")
input_ids = inputs["input_ids"]

model = FastSpeech2ConformerWithHifiGan.from_pretrained("espnet/fastspeech2_conformer_with_hifigan")
output_dict = model(input_ids, return_dict=True)
waveform = output_dict["waveform"]

sf.write("speech.wav", waveform.squeeze().detach().numpy(), samplerate=22050)
  1. Run inference with a pipeline and specify which vocoder to use
from transformers import pipeline, FastSpeech2ConformerHifiGan
import soundfile as sf

vocoder = FastSpeech2ConformerHifiGan.from_pretrained("espnet/fastspeech2_conformer_hifigan")
synthesiser = pipeline(model="espnet/fastspeech2_conformer", vocoder=vocoder)

speech = synthesiser("Hello, my dog is cooler than you!")

sf.write("speech.wav", speech["audio"].squeeze(), samplerate=speech["sampling_rate"])

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

Connor Henderson (Disclaimer: no ESPnet affiliation)

Model Card Contact

[More Information Needed]

Downloads last month
1,446
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using espnet/fastspeech2_conformer 3