Whisper Medium Mn - Erkhembayar Gantulga
This model is a fine-tuned version of openai/whisper-medium on the Common Voice 17.0 and Google Fleurs datasets. It achieves the following results on the evaluation set:
- Loss: 0.1083
- Wer: 12.9580
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
Datasets used for training:
For training, combined Common Voice 17.0 and Google Fleurs datasets:
from datasets import load_dataset, DatasetDict, concatenate_datasets
from datasets import Audio
common_voice = DatasetDict()
common_voice["train"] = load_dataset("mozilla-foundation/common_voice_17_0", "mn", split="train+validation+validated", use_auth_token=True)
common_voice["test"] = load_dataset("mozilla-foundation/common_voice_17_0", "mn", split="test", use_auth_token=True)
common_voice = common_voice.cast_column("audio", Audio(sampling_rate=16000))
common_voice = common_voice.remove_columns(
["accent", "age", "client_id", "down_votes", "gender", "locale", "path", "segment", "up_votes", "variant"]
)
google_fleurs = DatasetDict()
google_fleurs["train"] = load_dataset("google/fleurs", "mn_mn", split="train+validation", use_auth_token=True)
google_fleurs["test"] = load_dataset("google/fleurs", "mn_mn", split="test", use_auth_token=True)
google_fleurs = google_fleurs.remove_columns(
["id", "num_samples", "path", "raw_transcription", "gender", "lang_id", "language", "lang_group_id"]
)
google_fleurs = google_fleurs.rename_column("transcription", "sentence")
dataset = DatasetDict()
dataset["train"] = concatenate_datasets([common_voice["train"], google_fleurs["train"]])
dataset["test"] = concatenate_datasets([common_voice["test"], google_fleurs["test"]])
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.2986 | 0.4912 | 500 | 0.3557 | 40.1515 |
0.2012 | 0.9823 | 1000 | 0.2310 | 28.3512 |
0.099 | 1.4735 | 1500 | 0.1864 | 23.4453 |
0.0733 | 1.9646 | 2000 | 0.1405 | 18.3024 |
0.0231 | 2.4558 | 2500 | 0.1308 | 16.5645 |
0.0191 | 2.9470 | 3000 | 0.1155 | 14.5569 |
0.0059 | 3.4381 | 3500 | 0.1122 | 13.4728 |
0.006 | 3.9293 | 4000 | 0.1083 | 12.9580 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 17
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for erkhem-gantulga/whisper-medium-mn
Base model
openai/whisper-mediumDatasets used to train erkhem-gantulga/whisper-medium-mn
Space using erkhem-gantulga/whisper-medium-mn 1
Evaluation results
- Test WER on Common Voice 17.0test set self-reported12.958