File size: 2,848 Bytes
fdbd12c 20d2302 263bece 20d2302 263bece 20d2302 fdbd12c 263bece a891423 19b65d2 a891423 19b65d2 9edc004 7c0e3e4 9edc004 263bece 7c0e3e4 42414c0 7c0e3e4 22731d4 263bece f02250f 7c0e3e4 09993cb 7c0e3e4 09993cb ecd0650 ff0bc04 42414c0 7c0e3e4 42414c0 434e91c 263bece 19b65d2 263bece f02250f 263bece 20d2302 263bece 20d2302 263bece 20d2302 263bece 7c0e3e4 20d2302 263bece |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
license: apache-2.0
datasets:
- OpenAssistant/oasst1
- EleutherAI/pile
language:
- en
- es
- ar
- fr
- fa
metrics:
- accuracy
- bleu
pipeline_tag: text-generation
tags:
- code
---
this model uses Task classification and the conversation is between USER and Answer or AI
# NOTE β οΈ
THE JAX/FLAX version of model is available both for training and usage And This model support context length of 3300
this model support run with OST_UI so heres how to run it with just one command
```shell
git clone https://github.com/erfanzar/OST-OpenSourceTransformers
cd OST-OpenSourceTransformers/
python3 OST_UI/app.py --model_id='erfanzar/chatLGeM' --num_gpus <NUMBER OF GPUS TO USE>
```
## Examples π
```text
</s><|prompter|> TEXT </s><|assistant|>
```
or Just Simply Open [GOOGLE COLAB ππ](https://colab.research.google.com/drive/1nWS_FhWIDH3-g56F3FbWCIYi0ngVdWHx?usp=sharing)
### Generate Method to get res Text by Text
```python
def generate(model_,input_ids_,tokeinzer_,max_length:int=3300,temperature :float= 0.2,eos_token_id:int=2):
with torch.no_grad():
before_start = len(input_ids_[0])+1
for _ in range(max_length):
out = model_(
input_ids=input_ids_,
return_dict=True,
)
opa = torch.nn.functional.softmax(out.logits[:,-1,:]/temperature)
Camila = torch.multinomial(opa,1)
input_ids_ = torch.cat([input_ids_,Camila],-1)
clear_output(wait=True)
print(f"\r{tokeinzer_.decode(input_ids_[0],skip_special_tokens=True)[before_start:]}",end='')
if Camila[0].item() == eos_token_id:
break
yield tokeinzer_.decode(Camila[0],skip_special_tokens=True)
return f"{tokeinzer_.decode(input_ids_[0],skip_special_tokens=True)[before_start:]}"
```
### Result
```python
import socket
import time
def check_internet_connection():
try:
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(("www.google.com", 80))
print("Internet connection is active.")
except:
print("Internet connection is not active.")
if __name__ == "__main__":
check_internet_connection()
```
# Using Model in OST
### LGeM π
- what is LGeM, LGeM is a CausalLM Model that is trained on self instruct data (Alpaca data) and for initialization of the first train of the main model (weights are available) I used pre weights from Alpaca LoRA (open source)
- it's Decoder Only
- built-in Pytorch and Jax
- you can simply import models like (In EasyDeL or OST Library)
```python
# Pytorch
from modules import LGeMForCausalLM
# Jax
from modules import FlaxLGeMForCausalLM
```
- and Training code is available at jax_train.py (check source)
- training parameters
- - learning rate 2e-5
- - Optimizer AdamW
- - batch 32
- - TPU POD
- - Train Time 50 hours
- - budget 500 $
``` shell
python3 LGeM-train.py
``` |