Mini Stable Diffusion (miniSD)

MiniSD is a latent text-to-image diffusion model that has been conditionned on 256x256 images through finetuning.

Examples

WIP

Usage

!pip install diffusers==0.3.0
!pip install transformers scipy ftfy
import torch
from diffusers import StableDiffusionPipeline
from torch import autocast

# TODO: change model_id to "lambdalabs/miniSD"
pipe = StableDiffusionPipeline.from_pretrained("eolecvk/model-test", torch_dtype=torch.float16)  
pipe = pipe.to("cuda")

prompt = "Yoda"
scale = 10
n_samples = 4

# Sometimes the nsfw checker is confused, you can disable it at your own risk here
disable_safety = False

if disable_safety:
  def null_safety(images, **kwargs):
      return images, False
  pipe.safety_checker = null_safety

with autocast("cuda"):
  images = pipe(n_samples*[prompt], guidance_scale=scale).images

for idx, im in enumerate(images):
  im.save(f"{idx:06}.png")
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.