Mini Stable Diffusion (miniSD)
MiniSD is a latent text-to-image diffusion model that has been conditionned on 256x256 images through finetuning.
Examples
WIP
Usage
!pip install diffusers==0.3.0
!pip install transformers scipy ftfy
import torch
from diffusers import StableDiffusionPipeline
from torch import autocast
# TODO: change model_id to "lambdalabs/miniSD"
pipe = StableDiffusionPipeline.from_pretrained("eolecvk/model-test", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "Yoda"
scale = 10
n_samples = 4
# Sometimes the nsfw checker is confused, you can disable it at your own risk here
disable_safety = False
if disable_safety:
def null_safety(images, **kwargs):
return images, False
pipe.safety_checker = null_safety
with autocast("cuda"):
images = pipe(n_samples*[prompt], guidance_scale=scale).images
for idx, im in enumerate(images):
im.save(f"{idx:06}.png")
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.