embed-andegpt-H384
This is a sentence-transformers model finetuned from nreimers/MiniLM-L6-H384-uncased. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nreimers/MiniLM-L6-H384-uncased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: es
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("enpaiva/embed-andegpt-H384")
# Run inference
sentences = [
'¿Cuál es el nombre del reglamento que se menciona en la información proporcionada?',
'Reglamento de Baja Tensión de la ANDE: El 10- trata sobre Partes de que se compone una instalación eléctrica: y tiene las siguientes sub-secciones: <sub-section>10.1</sub-section>',
'Reglamento de Baja Tensión de la ANDE: El 37- trata sobre Soldadura eléctrica: y tiene las siguientes sub-secciones: <sub-section>37.1</sub-section>, <sub-section>37.2</sub-section>, <sub-section>37.3</sub-section>, <sub-section>37.4</sub-section>',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
andegpt-dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9983 |
dot_accuracy | 0.0022 |
manhattan_accuracy | 0.9985 |
euclidean_accuracy | 0.9983 |
max_accuracy | 0.9985 |
Triplet
- Dataset:
andegpt-test
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9973 |
dot_accuracy | 0.0024 |
manhattan_accuracy | 0.9971 |
euclidean_accuracy | 0.9973 |
max_accuracy | 0.9973 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
prediction_loss_only
: Falseper_device_train_batch_size
: 32learning_rate
: 2e-05lr_scheduler_type
: cosinelog_level_replica
: passivelog_on_each_node
: Falselogging_nan_inf_filter
: Falsebf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseprediction_loss_only
: Falseper_device_train_batch_size
: 32per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0warmup_steps
: 0log_level
: passivelog_level_replica
: passivelog_on_each_node
: Falselogging_nan_inf_filter
: Falsesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falsefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | andegpt-dev_max_accuracy | andegpt-test_max_accuracy |
---|---|---|---|---|---|
0 | 0 | - | - | 0.5920 | - |
0.1079 | 250 | 2.3094 | 0.7200 | 0.9597 | - |
0.2158 | 500 | 0.7952 | 0.3598 | 0.9813 | - |
0.3237 | 750 | 0.4862 | 0.2162 | 0.9910 | - |
0.4316 | 1000 | 0.3304 | 0.1558 | 0.9927 | - |
0.5395 | 1250 | 0.2527 | 0.1140 | 0.9961 | - |
0.6474 | 1500 | 0.1987 | 0.0859 | 0.9964 | - |
0.7553 | 1750 | 0.1617 | 0.0729 | 0.9959 | - |
0.8632 | 2000 | 0.1419 | 0.0562 | 0.9966 | - |
0.9711 | 2250 | 0.1132 | 0.0495 | 0.9968 | - |
1.0790 | 2500 | 0.1043 | 0.0429 | 0.9971 | - |
1.1869 | 2750 | 0.0947 | 0.0368 | 0.9978 | - |
1.2948 | 3000 | 0.0736 | 0.0367 | 0.9976 | - |
1.4027 | 3250 | 0.0661 | 0.0296 | 0.9978 | - |
1.5106 | 3500 | 0.0613 | 0.0279 | 0.9985 | - |
1.6185 | 3750 | 0.0607 | 0.0264 | 0.9983 | - |
1.7264 | 4000 | 0.0521 | 0.0238 | 0.9985 | - |
1.8343 | 4250 | 0.0495 | 0.0216 | 0.9985 | - |
1.9422 | 4500 | 0.0425 | 0.0211 | 0.9983 | - |
2.0501 | 4750 | 0.0428 | 0.0200 | 0.9983 | - |
2.1580 | 5000 | 0.0435 | 0.0190 | 0.9985 | - |
2.2659 | 5250 | 0.0393 | 0.0188 | 0.9983 | - |
2.3738 | 5500 | 0.0356 | 0.0182 | 0.9983 | - |
2.4817 | 5750 | 0.0351 | 0.0180 | 0.9988 | - |
2.5896 | 6000 | 0.0394 | 0.0181 | 0.9985 | - |
2.5973 | 6018 | - | - | - | 0.9973 |
Framework Versions
- Python: 3.11.0
- Sentence Transformers: 3.0.1
- Transformers: 4.39.3
- PyTorch: 2.2.0+cu121
- Accelerate: 0.28.0
- Datasets: 2.20.0
- Tokenizers: 0.15.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 38
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for enpaiva/embed-andegpt-H384
Base model
nreimers/MiniLM-L6-H384-uncasedEvaluation results
- Cosine Accuracy on andegpt devself-reported0.998
- Dot Accuracy on andegpt devself-reported0.002
- Manhattan Accuracy on andegpt devself-reported0.999
- Euclidean Accuracy on andegpt devself-reported0.998
- Max Accuracy on andegpt devself-reported0.999
- Cosine Accuracy on andegpt testself-reported0.997
- Dot Accuracy on andegpt testself-reported0.002
- Manhattan Accuracy on andegpt testself-reported0.997
- Euclidean Accuracy on andegpt testself-reported0.997
- Max Accuracy on andegpt testself-reported0.997