File size: 5,889 Bytes
7139690
b7382ec
 
7139690
b7382ec
7139690
 
 
 
 
b7382ec
 
 
1faabb7
c4d6637
 
fef49b0
 
 
c4d6637
7139690
 
 
 
4d2e2e2
7139690
 
 
 
 
 
 
 
 
 
 
 
 
4d2e2e2
7139690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d2e2e2
7139690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d2e2e2
7139690
4d2e2e2
 
 
 
 
 
 
7139690
 
 
4d2e2e2
 
7139690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
---
language:
- tr
pipeline_tag: sentence-similarity
license: apache-2.0
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
datasets:
- nli_tr
- emrecan/stsb-mt-turkish
widget:
  source_sentence: "Bu çok mutlu bir kişi"
  sentences:
    - "Bu mutlu bir köpek"
    - "Bu sevincinden havalara uçan bir insan"
    - "Çok kar yağıyor"
    
---

# emrecan/bert-base-turkish-cased-mean-nli-stsb-tr

This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. The model was trained on Turkish machine translated versions of [NLI](https://huggingface.co/datasets/nli_tr) and [STS-b](https://huggingface.co/datasets/emrecan/stsb-mt-turkish) datasets, using example [training scripts]( https://github.com/UKPLab/sentence-transformers/tree/master/examples/training) from sentence-transformers GitHub repository.

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["Bu örnek bir cümle", "Her cümle vektöre çevriliyor"]

model = SentenceTransformer('emrecan/bert-base-turkish-cased-mean-nli-stsb-tr')
embeddings = model.encode(sentences)
print(embeddings)
```



## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ["Bu örnek bir cümle", "Her cümle vektöre çevriliyor"]

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('emrecan/bert-base-turkish-cased-mean-nli-stsb-tr')
model = AutoModel.from_pretrained('emrecan/bert-base-turkish-cased-mean-nli-stsb-tr')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```



## Evaluation Results

Evaluation results on test and development sets are given below:

| Split      | Epoch | cosine_pearson | cosine_spearman | euclidean_pearson | euclidean_spearman | manhattan_pearson | manhattan_spearman | dot_pearson | dot_spearman |
|------------|-------|----------------|-----------------|-------------------|--------------------|-------------------|--------------------|-------------|--------------|
| test       |   -   | 0.834          | 0.830           | 0.820             | 0.819              | 0.819             | 0.818              | 0.799       | 0.789        |
| validation | 1     | 0.850          | 0.848           | 0.831             | 0.835              | 0.83              | 0.83               | 0.80        | 0.806        |
| validation | 2     | 0.857          | 0.857           | 0.844             | 0.848              | 0.844             | 0.848              | 0.813       | 0.810        |
| validation | 3     | 0.860          | 0.859           | 0.846             | 0.851              | 0.846             | 0.850              | 0.825       | 0.822        |
| validation | 4     | 0.859          | 0.860           | 0.846             | 0.851              | 0.846             | 0.851              | 0.825       | 0.823        |


## Training
Training scripts [`training_nli_v2.py`](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/nli/training_nli_v2.py) and [`training_stsbenchmark_continue_training.py`](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/sts/training_stsbenchmark_continue_training.py) were used to train the model.

The model was trained with the parameters:

**DataLoader**:

`torch.utils.data.dataloader.DataLoader` of length 360 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```

**Loss**:

`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` 

Parameters of the fit()-Method:
```
{
    "epochs": 4,
    "evaluation_steps": 200,
    "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'transformers.optimization.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 144,
    "weight_decay": 0.01
}
```


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```

## Citing & Authors

<!--- Describe where people can find more information -->