emrecan commited on
Commit
4d2e2e2
1 Parent(s): b7382ec

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -7
README.md CHANGED
@@ -15,9 +15,7 @@ datasets:
15
 
16
  # emrecan/bert-base-turkish-cased-mean-nli-stsb-tr
17
 
18
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
19
-
20
- <!--- Describe your model here -->
21
 
22
  ## Usage (Sentence-Transformers)
23
 
@@ -31,7 +29,7 @@ Then you can use the model like this:
31
 
32
  ```python
33
  from sentence_transformers import SentenceTransformer
34
- sentences = ["This is an example sentence", "Each sentence is converted"]
35
 
36
  model = SentenceTransformer('emrecan/bert-base-turkish-cased-mean-nli-stsb-tr')
37
  embeddings = model.encode(sentences)
@@ -56,7 +54,7 @@ def mean_pooling(model_output, attention_mask):
56
 
57
 
58
  # Sentences we want sentence embeddings for
59
- sentences = ['This is an example sentence', 'Each sentence is converted']
60
 
61
  # Load model from HuggingFace Hub
62
  tokenizer = AutoTokenizer.from_pretrained('emrecan/bert-base-turkish-cased-mean-nli-stsb-tr')
@@ -80,12 +78,20 @@ print(sentence_embeddings)
80
 
81
  ## Evaluation Results
82
 
83
- <!--- Describe how your model was evaluated -->
84
 
85
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=emrecan/bert-base-turkish-cased-mean-nli-stsb-tr)
 
 
 
 
 
 
86
 
87
 
88
  ## Training
 
 
89
  The model was trained with the parameters:
90
 
91
  **DataLoader**:
 
15
 
16
  # emrecan/bert-base-turkish-cased-mean-nli-stsb-tr
17
 
18
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. The model was trained on Turkish machine translated versions of [NLI](https://huggingface.co/datasets/nli_tr) and [STS-b](https://huggingface.co/datasets/emrecan/stsb-mt-turkish) datasets, using example [training scripts]( https://github.com/UKPLab/sentence-transformers/tree/master/examples/training) from sentence-transformers GitHub repository.
 
 
19
 
20
  ## Usage (Sentence-Transformers)
21
 
 
29
 
30
  ```python
31
  from sentence_transformers import SentenceTransformer
32
+ sentences = ["Bu örnek bir cümle", "Her cümle vektöre çevriliyor"]
33
 
34
  model = SentenceTransformer('emrecan/bert-base-turkish-cased-mean-nli-stsb-tr')
35
  embeddings = model.encode(sentences)
 
54
 
55
 
56
  # Sentences we want sentence embeddings for
57
+ sentences = ["Bu örnek bir cümle", "Her cümle vektöre çevriliyor"]
58
 
59
  # Load model from HuggingFace Hub
60
  tokenizer = AutoTokenizer.from_pretrained('emrecan/bert-base-turkish-cased-mean-nli-stsb-tr')
 
78
 
79
  ## Evaluation Results
80
 
81
+ Evaluation results on test and development sets are given below:
82
 
83
+ | Split | Epoch | cosine_pearson | cosine_spearman | euclidean_pearson | euclidean_spearman | manhattan_pearson | manhattan_spearman | dot_pearson | dot_spearman |
84
+ |------------|-------|----------------|-----------------|-------------------|--------------------|-------------------|--------------------|-------------|--------------|
85
+ | test | - | 0.834 | 0.830 | 0.820 | 0.819 | 0.819 | 0.818 | 0.799 | 0.789 |
86
+ | validation | 1 | 0.850 | 0.848 | 0.831 | 0.835 | 0.83 | 0.83 | 0.80 | 0.806 |
87
+ | validation | 2 | 0.857 | 0.857 | 0.844 | 0.848 | 0.844 | 0.848 | 0.813 | 0.810 |
88
+ | validation | 3 | 0.860 | 0.859 | 0.846 | 0.851 | 0.846 | 0.850 | 0.825 | 0.822 |
89
+ | validation | 4 | 0.859 | 0.860 | 0.846 | 0.851 | 0.846 | 0.851 | 0.825 | 0.823 |
90
 
91
 
92
  ## Training
93
+ Training scripts [`training_nli_v2.py`](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/nli/training_nli_v2.py) and [`training_stsbenchmark_continue_training.py`](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/sts/training_stsbenchmark_continue_training.py) were used to train the model.
94
+
95
  The model was trained with the parameters:
96
 
97
  **DataLoader**: