Edit model card

twitter-roberta-base-CoNLL

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0423
  • Precision: 0.9531
  • Recall: 0.9613
  • F1: 0.9572
  • Accuracy: 0.9926

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 64
  • eval_batch_size: 1024
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.11 25 0.2063 0.6517 0.6659 0.6587 0.9386
No log 0.23 50 0.0810 0.8373 0.8766 0.8565 0.9771
No log 0.34 75 0.0651 0.8937 0.9058 0.8997 0.9827
No log 0.45 100 0.0537 0.9014 0.9135 0.9074 0.9849
No log 0.57 125 0.0464 0.9097 0.9244 0.9170 0.9867
No log 0.68 150 0.0423 0.9243 0.9350 0.9296 0.9885
No log 0.8 175 0.0381 0.9250 0.9438 0.9343 0.9900
No log 0.91 200 0.0388 0.9264 0.9446 0.9354 0.9896
No log 1.02 225 0.0394 0.9328 0.9441 0.9384 0.9898
No log 1.14 250 0.0423 0.9348 0.9458 0.9403 0.9896
No log 1.25 275 0.0432 0.9304 0.9406 0.9355 0.9892
No log 1.36 300 0.0382 0.9393 0.9473 0.9433 0.9901
No log 1.48 325 0.0381 0.9326 0.9504 0.9414 0.9901
No log 1.59 350 0.0387 0.9337 0.9524 0.9429 0.9902
No log 1.7 375 0.0365 0.9404 0.9475 0.9439 0.9901
No log 1.82 400 0.0382 0.9431 0.9517 0.9474 0.9905
No log 1.93 425 0.0373 0.9399 0.9524 0.9461 0.9903
No log 2.05 450 0.0367 0.9440 0.9556 0.9497 0.9910
No log 2.16 475 0.0396 0.9400 0.9551 0.9475 0.9907
0.0771 2.27 500 0.0353 0.9442 0.9574 0.9508 0.9912
0.0771 2.39 525 0.0394 0.9401 0.9507 0.9454 0.9906
0.0771 2.5 550 0.0370 0.9447 0.9522 0.9485 0.9910
0.0771 2.61 575 0.0352 0.9404 0.9541 0.9472 0.9908
0.0771 2.73 600 0.0386 0.9345 0.9554 0.9448 0.9908
0.0771 2.84 625 0.0366 0.9428 0.9576 0.9502 0.9916
0.0771 2.95 650 0.0353 0.9427 0.9546 0.9486 0.9913
0.0771 3.07 675 0.0359 0.9412 0.9544 0.9478 0.9911
0.0771 3.18 700 0.0356 0.9476 0.9593 0.9534 0.9920
0.0771 3.3 725 0.0345 0.9484 0.9586 0.9535 0.9918
0.0771 3.41 750 0.0345 0.9427 0.9557 0.9492 0.9916
0.0771 3.52 775 0.0364 0.9389 0.9569 0.9478 0.9914
0.0771 3.64 800 0.0360 0.9430 0.9584 0.9507 0.9915
0.0771 3.75 825 0.0387 0.9458 0.9552 0.9505 0.9915
0.0771 3.86 850 0.0347 0.9468 0.9576 0.9521 0.9917
0.0771 3.98 875 0.0357 0.9445 0.9574 0.9509 0.9915
0.0771 4.09 900 0.0382 0.9464 0.9578 0.9521 0.9918
0.0771 4.2 925 0.0391 0.9475 0.9562 0.9518 0.9918
0.0771 4.32 950 0.0428 0.9466 0.9547 0.9506 0.9912
0.0771 4.43 975 0.0404 0.9459 0.9554 0.9506 0.9913
0.0118 4.55 1000 0.0403 0.9375 0.9549 0.9461 0.9909
0.0118 4.66 1025 0.0369 0.9482 0.9586 0.9534 0.9919
0.0118 4.77 1050 0.0374 0.9457 0.9584 0.9520 0.9918
0.0118 4.89 1075 0.0359 0.9507 0.9571 0.9539 0.9923
0.0118 5.0 1100 0.0373 0.9453 0.9594 0.9523 0.9919
0.0118 5.11 1125 0.0370 0.9499 0.9594 0.9546 0.9924
0.0118 5.23 1150 0.0388 0.9510 0.9601 0.9555 0.9922
0.0118 5.34 1175 0.0395 0.9486 0.9559 0.9522 0.9920
0.0118 5.45 1200 0.0391 0.9495 0.9591 0.9543 0.9924
0.0118 5.57 1225 0.0378 0.9517 0.9588 0.9552 0.9923
0.0118 5.68 1250 0.0388 0.9515 0.9615 0.9565 0.9924
0.0118 5.8 1275 0.0384 0.9512 0.9610 0.9560 0.9924
0.0118 5.91 1300 0.0395 0.9530 0.9613 0.9571 0.9924
0.0118 6.02 1325 0.0408 0.9499 0.9569 0.9534 0.9919
0.0118 6.14 1350 0.0412 0.9481 0.9616 0.9548 0.9922
0.0118 6.25 1375 0.0413 0.9521 0.9591 0.9556 0.9924
0.0118 6.36 1400 0.0412 0.9466 0.9584 0.9525 0.9917
0.0118 6.48 1425 0.0405 0.9504 0.9608 0.9556 0.9921
0.0118 6.59 1450 0.0400 0.9517 0.9615 0.9566 0.9925
0.0118 6.7 1475 0.0398 0.9510 0.9594 0.9552 0.9923
0.0049 6.82 1500 0.0395 0.9523 0.9615 0.9569 0.9925
0.0049 6.93 1525 0.0392 0.9520 0.9623 0.9571 0.9927
0.0049 7.05 1550 0.0390 0.9511 0.9593 0.9552 0.9923
0.0049 7.16 1575 0.0393 0.9520 0.9611 0.9565 0.9925
0.0049 7.27 1600 0.0389 0.9512 0.9613 0.9562 0.9925
0.0049 7.39 1625 0.0405 0.9518 0.9613 0.9565 0.9924
0.0049 7.5 1650 0.0410 0.9512 0.9606 0.9559 0.9925
0.0049 7.61 1675 0.0408 0.9526 0.9613 0.9569 0.9925
0.0049 7.73 1700 0.0436 0.9482 0.9610 0.9545 0.9922
0.0049 7.84 1725 0.0419 0.9495 0.9625 0.9560 0.9924
0.0049 7.95 1750 0.0429 0.9525 0.9618 0.9571 0.9926
0.0049 8.07 1775 0.0419 0.9509 0.9615 0.9562 0.9924
0.0049 8.18 1800 0.0422 0.9510 0.9601 0.9555 0.9923
0.0049 8.3 1825 0.0417 0.9521 0.9603 0.9562 0.9924
0.0049 8.41 1850 0.0415 0.9529 0.9611 0.9570 0.9925
0.0049 8.52 1875 0.0416 0.9523 0.9611 0.9567 0.9924
0.0049 8.64 1900 0.0419 0.9504 0.9608 0.9556 0.9922
0.0049 8.75 1925 0.0417 0.9520 0.9610 0.9564 0.9924
0.0049 8.86 1950 0.0419 0.9535 0.9621 0.9578 0.9926
0.0049 8.98 1975 0.0422 0.9531 0.9620 0.9575 0.9927
0.0022 9.09 2000 0.0423 0.9531 0.9613 0.9572 0.9926
0.0022 9.2 2025 0.0426 0.9520 0.9615 0.9567 0.9925
0.0022 9.32 2050 0.0425 0.9515 0.9606 0.9560 0.9925
0.0022 9.43 2075 0.0422 0.9517 0.9613 0.9565 0.9925
0.0022 9.55 2100 0.0423 0.9513 0.9606 0.9560 0.9925
0.0022 9.66 2125 0.0424 0.9513 0.9605 0.9559 0.9925
0.0022 9.77 2150 0.0423 0.9522 0.9611 0.9566 0.9925
0.0022 9.89 2175 0.0423 0.9522 0.9613 0.9567 0.9925
0.0022 10.0 2200 0.0422 0.9525 0.9616 0.9570 0.9925

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0
  • Datasets 2.3.2
  • Tokenizers 0.12.1
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train emilys/twitter-roberta-base-CoNLL

Evaluation results